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ABSTRACT

Local ensemble transform Kalman filter (LETKF) data assimilation, three-dimensional variational data

assimilation (3DVAR), and four-dimensional variational data assimilation (4DVAR) schemes are imple-

mented in a quasigeostrophic channel model. Their advantages and disadvantages are compared to assess

their use in practical applications. LETKF and 4DVAR, which take into account the flow-dependent errors,

outperform 3DVAR under a perfect model scenario. Given the same observations, LETKF produces more

accurate analyses than 4DVAR with a 12-h window by effectively correcting the fast-growing errors with the

flow-dependent background error covariance. Even though 4DVAR performance benefits substantially from

using a longer assimilation window, LETKF is also able to achieve a satisfactory accuracy compared to

the 24-h 4DVAR analyses. It is shown that the advantage of the LETKF over 3DVAR is a result of both the

ensemble averaging and the information about the ‘‘errors of the day’’ provided by the ensemble. The

analysis corrections at the end of the 12-h assimilation window are similar for LETKF and the 12-h window

4DVAR, and they both resemble bred vectors. At the beginning of the assimilation window, LETKF analysis

corrections obtained using a no-cost smoother also resemble the corresponding bred vectors, whereas the

4DVAR corrections are significantly different with much larger horizontal scales.

1. Introduction

The procedure that combines all available informa-

tion on the state of a physical system to obtain the best

estimate of its state is known as data assimilation (DA);

such a best estimate is usually referred to as an analysis.

In geophysics and specifically in numerical weather

prediction (NWP), DA algorithms are designed to

provide optimal initial conditions for prediction models.

By extracting information from the observations and
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system physics, a good DA algorithm should improve

the analysis and consequently the forecast skill. Due to

the chaotic nature of nonlinear systems such as the at-

mosphere and the oceans, accurate initial conditions are

crucial to making reliable forecasts. Most current op-

erational DA schemes statistically combine the obser-

vations and a short-range forecast.

Three-dimensional variational data assimilation

(3DVAR) is considered an economically and statisti-

cally reliable DA method and is implemented in many

operational centers. It assumes that the two sources of

information, forecast and observations, have errors that

are adequately described by static error covariances

(Talagrand 1997). Although these assumptions make

solving realistic NWP problems computationally tracta-

ble (Parrish and Derber 1992), 3DVAR misses the time-

dependent and nonnormal error dynamics common in

nonlinear chaotic systems, that is, the ‘‘errors of the day.’’

Four-dimensional variational data assimilation

(4DVAR) is an advanced DA technique that computes

the model trajectory that best fits the observations dis-

tributed within a given time interval with the dynamical

constraints of the model equations (Talagrand and

Courtier 1987; Courtier et al. 1994; Rabier et al. 2000).

The 4DVAR employs optimal control theory (Le

Dimet and Talagrand 1986) to minimize the cost func-

tion defined over the time interval by using an adjoint

model to determine its gradient. Given its high com-

putational cost of minimizing the cost function, 4DVAR

has been implemented operationally only in its simpli-

fied incremental form (Courtier et al. 1994), and the

tangent linear and the adjoints models with the sim-

plified physics are used in the inner loop to speed up

the minimization. The forecast covariance matrix in

4DVAR is implicitly evolved within the assimilation win-

dow from a constant initial background error covariance

such that an updated analysis covariance is nontrivial to

obtain for the next assimilation cycle (e.g., Kalnay 2003).

Although studies show that 4DVAR analyses could be

improved by using a longer assimilation window (Pires

et al. 1996), this extension comes with computational costs

that limit its application for dynamically complex models

and also the limitation from model errors. Operational

centers have not yet used an assimilation window of more

than one day for a 6-h analysis cycle.

In contrast to variational methods, the ensemble

Kalman filter (EnKF) uses a sequential method based

on the Kalman filter (KF; Kalman 1960; Kalman and

Bucy 1961). A KF uses an evolving full-rank error co-

variance, which is computationally extremely expen-

sive. A KF produces equivalent results to 4DVAR at

the end of the assimilation window given a linear model,

the same Gaussian error statistics and linear observa-

tion operators (Lorenc 1986). During the past decade,

experience with ensemble forecasting has suggested

that an ensemble approach could address some of the

computational costs of KF with large and complex dy-

namics. The first and most celebrated ensemble-based

scheme is the ensemble Kalman filter (Evensen 1994). It

applies estimation theory with a Monte Carlo statistical

approach to the conceptual and mathematical frame-

work of KF. Most of the current ensemble-based data

assimilation schemes have been designed to offer a

nonlinear extension of the KF approach while reducing

its computational cost. The use of the full nonlinear

model may be beneficial for analyses for situations in

which nonlinearity is strong and statistics exhibit some

nonnormality (Hamill 2006; Yang 2005). Several types

of ensemble-based KF algorithms have been developed

using either stochastic (perturbed observations) or de-

terministic (square root) filters. In each ensemble-based

scheme, a nonlinearly evolved ensemble of trajectories

samples the unknown flow-dependent error distribution

using an ensemble number several orders of magnitude

smaller than the dimensions of the system’s state vector.

Given the same limited ensemble size, the square root

filters have proven to be more accurate than the sto-

chastic methods because random errors are introduced

through the perturbed observations (Whitaker and

Hamill 2002). Discussions and reviews of the ensemble-

based data assimilations method can be found in Hamill

(2006) and Evensen (2003). The results obtained so far

indicate that they represent a feasible alternative to

4DVAR (Houtekamer and Mitchell 1998; Anderson

2001; Whitaker and Hamill 2002; Evensen, 2003; Ott

et al. 2004; Kalnay et al. 2007a; Caya et al. 2005; Miyoshi

and Yamane 2007).

Compared to 4DVAR, an ensemble-based KF

scheme is easy to implement and maintain, because it

does not require the development and maintenance of

the tangent linear and adjoint models. Its analysis en-

semble also provides a set of dynamically consistent

states to initialize an ensemble prediction system while

the 3DVAR/4DVAR schemes require an additional

procedure to start a probabilistic forecast. In ensemble

KF methods, flow-state information, such as uncer-

tainties associated with flow instabilities, is propagated

through the DA cycle, unlike variational-based methods.

Lorenc (2003) and Kalnay et al. (2007a) provide more

detailed discussions of the pros and cons of ensemble

Kalman filters and 4DVAR. Comparisons between

variational-based and ensemble-based DA schemes

have mostly used simple models (e.g., Anderson 2001;

Fertig et al. 2007). Recently, Caya et al. (2005) com-

pared 4DVAR and EnKF with a realistic atmospheric

model for the convective-scale assimilation and found
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that 4DVAR was more accurate in the initial stages and

that EnKF became more accurate later in the devel-

opment of a storm. This suggests that EnKF has a longer

spinup, a problem addressed by E. Kalnay and S.-C. Yang

(2008, manuscript submitted to Quart. J. Roy. Meteor.

Soc., hereinafter KY08). The impact of assuming a con-

stant background error covariance used in 4DVAR, given

the short assimilation window affordable in operational

centers, still remains to be clearly assessed.

This work compares variational and ensemble-based

DA schemes based on the quality of their analyses as well

as their computational costs. One ensemble-based and

two variational schemes are applied to a quasigeo-

strophic channel model using the same ‘‘noisy’’ obser-

vations. The two variational schemes are 3DVAR

(developed by Morss 1999 and Morss et al. 2001, fol-

lowing Parrish and Derber 1992) and 4DVAR (newly

implemented for this study). The ensemble scheme is the

local ensemble transform Kalman filter (LETKF; based

on Hunt et al. 2007), an efficient ensemble square root

filter in a parallel computational setup (Whitaker et al.

2008). In this study, the perfect model assumption is

made for all the experiments to focus on the ability of the

DA schemes to control and reduce errors coming from

an incorrect estimate of the initial conditions. This article

explores the differences between the variational-based

and the LETKF methods and discusses considerations

applicable to using these methods operationally.

The paper is organized as follow: section 2 outlines

the model and observation network setup, section 3

describes the DA schemes used in this study, and sec-

tion 4 presents the results. Finally, the findings are

summarized and discussed in Section 5.

2. Model and observing system design

a. The quasigeostrophic, tangent linear, and adjoint
models

All the data assimilation schemes are implemented

in the quasigeostrophic (QG) model developed by

Rotunno and Bao (1996). It is a periodic channel model

on a beta plane. At the resolution used in this study, it

has 64 grid points in the zonal direction, 33 grid points in

the meridional direction, and 7 vertical levels. Physical

processes include advection, diffusion, relaxation, and

Ekman pumping at the bottom level. The model varia-

bles are nondimensional potential temperature at the

bottom and top levels, and nondimensional potential

vorticity at the five inner levels. Note that the model

variables are also the analysis variables in all the fol-

lowing assimilation schemes. The integration time step is

30 min. The numerical schemes used for advecting and

inverting PV are described in Rotunno and Bao (1996).

The forcing and dissipation included in the model are

specified in Snyder et al. (2003), where some character-

istics of the statistically steady turbulent flow are also

discussed. This model has been widely used for testing

data assimilation, error characteristics, and adaptive ob-

servations methods (e.g., Morss 1999; Hamill and Snyder

2000; Snyder et al. 2003; Corazza et al. 2003, 2007; Kim

et al. 2004; Carrassi et al. 2007). In this study, the model is

assumed to be perfect and the true state, from which

observations are extracted, is represented by a reference

trajectory integrated by the QG model.

The implementation of the 4DVAR requires the de-

velopment of the tangent linear and adjoint models. To

this end, the Tangent Linear and Adjoint Model Com-

piler (TAMC; Giering and Kaminski 1998) was used to

generate a preliminary version of the codes, which did

not fulfill the boundary conditions automatically. Several

very subtle corrections (i.e., a long debugging effort) were

required for the TAMC-generated linear and adjoint

models to eliminate a spurious accumulation of extreme

values at the meridional and vertical walls and at zonal

periodic boundaries. Verification checks for tangent linear

and adjoint codes, following Navon et al. (1992), indicate

that the linear regime is valid for forecasts up to 5 days.

b. The observing system configuration

The simulated ‘‘rawinsonde observations’’ consist of

the velocity components and temperature at all levels.

They are generated from the true state through a linear

observation operator, H, mapping from model variables

into observation variables (Morss 1999). In H, the wind

and temperature are calculated through finite differ-

ences of the streamfunction, which is obtained from the

model variables (potential vorticity and temperature).

Sixty-four rawinsonde observations are used and their

locations are randomly chosen and remain fixed after-

ward. The observation locations are on the model grid

points and cover about 3% of the domain. Observations

are available every 12 h and the analysis cycle is also

performed every 12 h.

Observation errors are generated by adding white

random noise sampled by a Gaussian distribution con-

sistent with the observational error covariance matrix

(Morss 1999; Morss et al. 2001). The observation error

covariance matrix is constructed following Dey and

Morone (1985): the observation error is assumed to be

uncorrelated between observations and between dif-

ferent variables. Only vertical correlations for the same

variable are considered. The wind and temperature

observation error variances are adapted from Parrish

and Derber (1992) and the corresponding values are

provided in Morss (1999).
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3 Data assimilation schemes

a. 3DVAR

The 3DVAR system implemented for the QG model

was developed by Morss (1999). The time-independent

background error covariance matrix B3DVAR (in the

model gridpoint coordinates is truncated and saved

in the form of spectral coordinates as in Parrish

and Derber (1992). The background error covariance

in spectral coordinates (C) is assumed to have sepa-

rable horizontal and vertical structures. It is built by

calculating the horizontal error covariances at each

level and linking them through a vertical correlation

matrix as

C 5 Ĉ1/2VĈ1/2. (1)

In (1) Ĉ, the matrix of horizontal background error

covariance at each level, is diagonal because the errors

corresponding to different wavelengths are assumed to

be uncorrelated in horizontal spectral coordinates. The

V is a 7 3 7 matrix of background error correlations

between different levels averaged from all the hori-

zontal spectral components. The gridpoint space matrix

B3DVAR is then obtained using an operator (S) to

transform from gridpoint to spectral space. Thus,

B3DVAR 5 SCST. This structure of the error covariance

in spectral space is also used for 4DVAR (section 3b).

The matrices Ĉ and V given in Morss (1999) were

generated with 32 observations. Because baroclinic in-

stability is the dominant dynamical process in this

model, changes in the number of observations have

little impact on the structure C. The performance of

3DVAR is not sensitive to the assumption that C is the

same for all observation densities. The amplitude of C is

reduced here by a factor of 0.4 to optimize the 3DVAR

results for the present observation configuration.

3DVAR is implemented and solved in the incre-

mental cost-function form as follows:

J(dxa) 5
1

2
fdxT

a B�1
3DVARdxa

1[yo �H(xb)]TR�1[yo �H(xb)]g, (2)

where yo is the observational vector, R is the observa-

tion error covariance matrix, and H is the observation

operator. The control variable for the minimization of

the cost function is the analysis increment dxa5 xa – xb,

where xa is the analysis and xb is the background state

vector. The minimum in the cost function (2) is obtained

by solving for the model state xa, which has a cost-

function gradient equal to zero:

(I 1 B3DVARHTR�1H)(xa � xb) 5 B3DVARHTR�1

3 (yo � xb). (3)

In (3), H is the linearized observation operator. In all the

applications described in this work, the observation

operator is inherently linear. The analysis increment is

solved with conjugate residual minimization.

In this study, the 3DVAR provides the benchmark for

comparison with other assimilation schemes. Further

details on the configuration setup of 3DVAR are dis-

cussed in Morss (1999).

b. 4DVAR

The 4DVAR cost function (4) generalizes the 3DVAR

cost function in that it considers observations distributed

within a time interval. Given the background state at the

beginning of the assimilation window, xb, and the obser-

vations yo
i at time ti, the minimization of the cost function

(4) provides the initial condition (at the beginning of the

time interval) leading to the forecast trajectory that best

fits all the observations within the assimilation window

(Courtier et al. 1994):

J[x(t0)] 5
1

2
[x(t0)� xb]TB�1[x(t0)� xb]

1
1

2

Xi5n

i50

fH[x(ti)]� yo
i g

TR�1fH[x(ti)]� yo
i g.

(4)

In (4), H is the observation operator. The incremental

approach (Courtier et al. 1994) is used to seek the mini-

mum of the 4DVAR cost function with the tangent linear

approximation. Defining the analysis increment as the

difference between the minimum in (4) and the back-

ground state [xðt0Þ � xb 5 dx(t0)], the incremental form

of the cost function is shown in (5), and the corresponding

gradient of (5) with respect to dx(t0) is shown in (6):

J[dx(t0)] 5
1

2
[dx(t0)]TB�1[dx(t0)]

1
1

2

Xn

i50

[HiL(t0, ti)dx(t0)� d(ti)]TR�1

3 [HiL(t0, ti)dx(t0)� d(ti)] and (5)

=J[dx(t0)] 5 B�1[dx(t0)] 1
XK

i50

LT(ti, t0)HTR�1

3 [HL(t0, ti)dx(t0)� d(ti)]. (6)

In these equations, d(ti) is the innovation (the dif-

ference between the background state and observa-

tions) at observing time ti, L(t0,ti) is the tangent linear
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(forward) model advancing a perturbation from t0 to ti,

and LT(ti, t0) is the adjoint (backward) operator. In (4)

or (5) and (6), the background error covariance B at

the beginning of the window t0 is important in initially

distributing the correction. In Courtier et al. (1994), the

process of minimization of (5) is referred to as the

‘‘inner loop,’’ because only the linear operators are in-

volved and the nonlinearity of the trajectory is not

considered. We also note that in the operational

framework, these linear operators typically use simpli-

fied physics and/or a low-resolution grid. To account for

nonlinearity, an outer loop is applied so that the incre-

ment is used to update the background and its distance

dðtiÞ to the observations. Then, this improved back-

ground and the innovations are used for the next cycle

of the inner loop. In this study, the nonlinearity has been

considered by applying the full nonlinear model to

compute [HL(t0, ti)dx(t0)� d(ti) 5 HMt0!ti
[x(t0)]� yo

i ],

so that the outer loop is unnecessary.

The incremental cost function (5) is preconditioned

using a variable transformation that avoids inverting B

to compute the cost function directly and make the

minimization more efficient. The transformation oper-

ator U is chosen to be the square root of the inverse of B,

that is, U 5 B�1/2. With the preconditioned variable dv,

the analysis increment is expressed as dx 5 U�1dv and

the cost function is reformulated as

J[dv(t0)] 5
1

2
[dv(t0)]T

dv(t0) 1
1

2

Xn

i50

[HL(t0, ti)U
�1dv(t0)

� d(ti)]TR�1[HL(t0, ti)U
�1dv(t0)� d(ti)].

(7)

The gradient of (7) for dv(t0) becomes

=J[dv(t0)] 5 dv(t0) 1
XK

i50

(U�1)TLT(ti, to)HTR�1

3 [HL(t0, ti)U
�1dv(t0)� d(ti)]. (8)

This allows an iterative minimization with respect to the

variable dv, which is initially set to zero.

In this study, B is assumed to have the same structure

as B3DVar, a reasonable assumption for the perfect

model experiments, and the amplitude of the B is op-

timized by tuning a constant factor b0:

B 5 b0 3 B3DVAR 5 S(
ffiffiffiffiffi
b0

p
Ĉ1/2)V(

ffiffiffiffiffi
b0

p
Ĉ1/2)ST. ð9Þ

For the 12-h assimilation window, b0 5 0.05 was de-

termined to be optimal, indicating that the analysis error

variance from 4DVAR is much smaller than 3DVAR.

As the assimilation window becomes longer, the accuracy

is less sensitive to the amplitude of B. In the following

results, this optimally tuned B is used as the initial

background error covariance for all the 4DVAR exper-

iments. From (1), U�1 is defined as

U�1 5 S(
ffiffiffiffiffi
b0

p
Ĉ1/2)V1/2. (10)

Because Ĉ1/2 and V are the same as in 3DVAR, only the

square root of the vertical correlation matrix (V1/2) is

required, a trivial computation for a 7 3 7 matrix.

Given an initial guess for dvðt0Þ defined in spectral

coordinates, the cost function and its gradient are

computed using (6) and (7). A Liu and Nocedal (1989)

update of Broyden (1969), Fletcher (1970), Goldfarb

(1970), and Shanno (1970) (L-BFGS) quasi-Newton

minimizer is used to determine how dvðt0Þ should be

modified to reduce the value of (7) with respect to its

gradient. After each iteration, dvðt0Þ is converted back

to grid coordinates to derive a new initial increment

[dxðt0Þ], which is then added to the initial background

state to generate a new initial state x(t0). The full non-

linear model is used to forward integrate x(t0) to the end

of the assimilation window. The process is repeated

until the minimization criterion for the L2 norm of the

cost-function gradient is within a chosen threshold tol-

erance value of 1023 and terminated if the maximum

number of 30 iterations is reached. As mentioned be-

fore, the innovation vector is also approximated using

the full nonlinear model and assuming that the analysis

state is close to the background state, as follows:

HL(t0, ti)U
�1dv� d(ti) ’ HMt0!ti

[x(t0)]� yo
i . (11)

By doing so, we also take into account the nonlinearity of

the model trajectory. To determine a practical assimila-

tion window length, 4DVAR runs were made for lengths

ranging from 12 h to 5 days. Table 1 shows the time and

domain root-mean-square (RMS) analysis errors, in

terms of the generalized potential vorticity norm,1 for

TABLE 1. Mean RMS of analysis errors (in terms of generalized

potential vorticity) of 4DVAR with different assimilation window

lengths averaged over 80 days.

3DVAR

4DVAR

12 h 24 h 48 h 72 h 96 h 120 h

RMSE (3102) 6.24 2.63 1.81 1.50 1.37 1.29 1.19

1 The generalized potential vorticity (~qi) is the same as the

model potential vorticity (q), except for the first and fifth levels

where the potential temperatures ( u) are incorporated. For these

levels, it is defined as q1 5 q11(Nb/dz)ub; q5 5 q5 � (Nt/dz)ut ,

where N is the nondimensional static instability and subscript b is

for the bottom level and t is for the top level.
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different assimilation windows averaged over 80 days.

These results confirm that longer windows, although

computationally costlier, improve the 4DVAR analyses

(Pires et al. 1996; Kalnay et al. 2007a). Most of the im-

provement is gained when the assimilation window in-

creases from 12 h to one day, while beyond one day the

improvement is small. By comparing the experiment on a

Linux PC machine with a Pentium 2.66-GHz processor

and a 1GB of memory, the computational time needed

for a 5-day window is 9 times larger than that needed for

a 12-h window. As a consequence, it may become im-

practical to use a very long assimilation window with the

4DVAR scheme in an operational framework (in addi-

tion to the fact that the perturbations dynamics would

become very nonlinear in a more unstable system than

this QG model).

Here, 12- and 24-h assimilation windows are used as

proxies of short and long windows that are operationally

affordable. Comparing the error doubling time of about

2.5–4 days in this QG model (Morss 1999) to a realistic

atmospheric NWP model with a doubling rate of 1.5–2

days (Toth and Kalnay 1993; Simmons et al. 1995), the

4DVAR performance with a 12-h assimilation window

in this QG model could be a proxy for the performance

of the 6-h 4DVAR with an NWP model. Thus, we can

refer to a 12-h window as a short window and use it to

compare with the LETKF performance. Also, the result

of 4DVAR with a 24-h window is used to represent the

performance of a longer window. Despite not being

very long, most of the advantages of longer windows

were attained at 24 h.

For the 12-h assimilation window, observations are

available at the end of the window; for the 24-h assim-

ilation window, observations are available at the middle

and the end of the window. To perform an analysis

every 12 h and avoid observations being used twice, two

successive assimilation windows in the 24-h 4DVAR are

overlapped but initialized independently from each

other, as done operationally (A. Lorenc 2008, personal

communication). These two experiments will be re-

ferred to as 4DV12H and 4DV24H, respectively. Note

that only the 4DV12H window uses the same informa-

tion as 3DVAR and LETKF.

c. Local ensemble transform Kalman filter

The local ensemble Kalman filter (LEKF) was first

proposed by Ott et al. (2004), who solved the ensemble

Kalman filter equations in local patches exploiting the

low-dimensional properties of atmospheric instabil-

ities (Patil et al. 2001). Szunoygh et al. (2005) suc-

cessfully tested this scheme in a large realistic

atmospheric primitive equation model with compli-

cated physics [National Centers for Environmental

Prediction (NCEP) GFS]. Corazza et al. (2007) com-

pared LEKF with 3DVAR with the same QG model

used here. The LEKF scheme was modified by Hunt

et al. (2007) into LETKF, an equivalent but more ef-

ficient approach. This scheme provides essentially

identical results to the ensemble square root filter of

Whitaker and Hamill (2002) but is computationally

more efficient as the number of processors increases

(Whitaker et al. 2008). The LETKF scheme assimilates

observations in local domains, allowing both the DA

step and the construction of new ensemble vectors to

be performed locally and in parallel, in contrast to the

variational methods (3DVAR/4DVAR). In LETKF, a

transform matrix (Bishop et al. 2001) is used to map

from the K-dimensional space back to the local phys-

ical space.

The local analysis is performed sequentially in a

local domain (local volume) with total N 5 (2l 1 1)2
3

(2lz 1 1) grid points, where l and lz are the chosen

horizontal and vertical number of grid points sur-

rounding the central analysis grid point. The horizontal

projection of the local volume is referred to as the local

‘‘patch.’’ In a single-processor computer, LETKF com-

putes local analyses sequentially. The local background

ensemble mean �xf is an N 3 1 vector, and the ensemble

perturbations Xf are arranged by column in an N 3 K

matrix. A similar notation is adopted for the ensemble

of analysis states, with the mean denoted by �xa and the

matrix of deviations denoted by Xa. The standard KF

formula (Kalman 1960; Kalman and Bucy 1961) is used

to solve the analysis with the corresponding ‘‘local’’

error statistics (Hunt et al. 2007). The local analysis

ensemble mean is represented by

�xa 5 �xf 1 Pf HT(HPf H
T 1 R)�1[yo �H(�xf )], (12)

where yo, H, and R have the same definitions as in

sections 3a,b but now are defined in the local domain.

The Pf is the local forecast error covariance in the

model grid coordinate (physical space), estimated from

Xf , the matrix whose columns are K local ensemble

forecast perturbations. Thus,

Pf 5
1

K � 1
Xf X

T
f . (13)

LETKF transforms the ensemble background pertur-

bations into the analysis ensemble perturbations in the

K-dimension ensemble space so that

Pa 5
1

K � 1
XaXT

a 5 Xf
~PaXT

f , (14)

where ~Pa denotes the analysis error covariance in the

ensemble space, computed as
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~Pa 5 [(HXf )TR�1(HXf ) 1 (K � 1)I ]�1. (15)

The analysis ensemble perturbations are

Xa 5 Xf [(K � 1)~Pa]1/2. (16)

Note that a symmetric square root of ~Pa is used to ob-

tain the analysis ensemble perturbations. This ensures

that there is a zero mean for ensemble perturbations,

the matrix [(K � 1)~Pa]1/2 is closest to the identity ma-

trix, given the constraint of the analysis error covari-

ance, and the analysis ensemble perturbations depend

continuously on ~Pa so as to be consistent with the

background ensemble perturbations (Ott et al. 2004).

Using (15) and (16), (12) can be rewritten as

�xa 5 �xf 1 Xf
~Pa(HXf )TR�1[yo �H(�xf )]. (17)

Equations (16) and (17) provide the analysis ensemble

perturbations and its mean. [See Hunt et al. (2007) for

more details and discussion on LETKF.]

Three procedures are used in this study to improve

the performance of the LETKF. First, a multiplicative

variance inflation is applied to the background ensem-

ble perturbations. The inflation magnitude is vertically

dependent (Table 2) to reflect error characteristic (see

Fig. 4; section 4b). This reduces the RMS analysis error

by about 4% for the potential vorticity at interior levels

and 6.5% for the potential temperature at the bottom

level compared to a vertically constant inflation vari-

ance. Second, additive variance inflation (Corazza et al.

2007) is used to improve the performance of the system

by ‘‘refreshing’’ the ensemble vectors. This prevents the

ensemble from collapsing into a space that is too small

and avoids the rank problems characteristic of evolving

perturbations converging to the leading Lyapunov

vector (Wang and Bishop 2003; Etherton and Bishop

2004). We note that the procedure of localization in

LETKF to use observations locally would also address

some of the rank problems (Hamill et al. 2001). In this

study, the refreshing is computed by generating random

perturbations with a size of about 2% of the field vari-

ability at the observation locations, and then converting

them back to model coordinates by applying the trans-

pose of the observation operator.

Third, an observation localization method that mul-

tiplies the observation error covariance by the inverse of

a Gaussian localization operator is used to weight the

observations located farther away from the center of the

volume (Miyoshi 2005). This has a significant impact

when the observations are sparse and large local patches

are required. All seven vertical levels are included in the

local volume without vertical localization (2lz 1 1 5 7).

The size of the local patch needs to be optimized de-

pending on the ensemble size and observational density.

Enlarging local patches improves performance, but this

effect saturates beyond a certain size [see discussion and

Table 4 in Corazza et al. (2007)]. The optimal local

(horizontal) domain for 64 observations and 40 en-

semble members is 19 3 19 (l 5 9), which allows the

assimilation of about three to four observations per lo-

cal patch. The experimental configuration of LETKF

follows closely the LEKF configuration in Corazza et al.

(2007). Table 2 summarizes the experimental configu-

ration of the LETKF used in this study.

4. Results

a. The flow-dependent background error covariance
in LETKF

In this section, we focus on whether the explicit com-

putation of the flow-dependent background–analysis

error covariance by LETKF represents a significant

advantage over 3DVAR. Figure 1 compares the RMS

analysis errors to show that the analysis derived from

LETKF (blue line) outperforms the 3DVAR analysis

(black line).

To explore this question, the ensemble mean back-

ground state from the LETKF system was first provided

as a background to 3DVAR. The 3DVAR analysis from

the modified background states is much more accurate

(red line in Fig. 1) than the original 3DVAR analysis

and only slightly worse than the LETKF analysis. This

result might be interpreted as evidence that the effect of

ensemble averaging in LETKF is more important than

the information on so-called errors of the day. However,

this interpretation would be incorrect because the latter

allows LETKF to minimize the errors of the day and

to provide a better first guess than 3DVAR. When

3DVAR is continued without further information from

the LETKF background, the errors of the day that were

suppressed in the ensemble mean immediately grow

and the 3DVAR analysis error increases over a few

days to its normal value (the green line in Fig. 1). By

TABLE 2. Settings adopted for the LETKF system for the

simulations described in the text.

Horizontal dimension of the

local domain

19 3 19 (l 5 9)

Number of ensemble members K 5 40

Method to update the global field Center point

Amplitude of the random

perturbations

2% vectors amplitude

Multiplicative variance inflation 1.08 1.06 1.07 1.08

1.075 1.07 1.14

Decorrelation length rd 5 7
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projecting the corrections onto the local dynamical

instabilities estimated by the ensemble, the LETKF

background error covariance is able to properly cor-

rect the background state (ensemble mean) with the

available observations. At the same time, the accuracy

of the mean state also determines the effectiveness of

ensemble perturbations (see more discussion in section

4b). This accumulated information makes LETKF

perform better than 3DVAR.

In a complementary experiment, the LETKF back-

ground ensemble perturbations are replaced with Gaus-

sian random perturbations drawn from the 3DVAR

background error covariance B3DVar, that is, generating

K ensemble perturbations B1/2
3DVARhk, where hk are

Gaussian random perturbations with unit variance and

model dimension. Figure 2 shows that the quality of local

LETKF analysis with isotropic ensemble perturbations

from B3DVAR not representing the errors of the day

quickly degrades to a level even worse than 3DVAR (red

line). From Figs. 1 and 2, we conclude that the improve-

ment from LETKF is the combined effect of the ensem-

ble averaging to filter out the unpredictable uncertainties,

and of the information that the ensemble brings on the

errors of the day.

b. Comparisons of 3DVAR, 4DVAR, and LETKF

Table 3 shows the temporally and spatially averaged

RMS analysis errors of 3DVAR, 4DV12H, 4DV24H,

and LETKF with different-sized local domains. LETKF,

with a small local patch of 7 3 7 grid points (l 5 3) and

only 20 ensemble members, already outperforms the

3DVAR. The LETKF analysis computed from a local

patch of 11 3 11 grid points (l 5 5) and 20 ensemble

members has comparable accuracy to 4DV12H and is

more accurate with a 40-member ensemble. Results for

local patches larger than 11 3 11 are slightly worse than

the results for 4DV24H. The remaining results are

based on LETKF, with a local patch of 19 3 19 (l 5 9)

and 40 ensemble members.

Table 3 also lists the computation time required to

perform one analysis cycle with 3DVAR, 4DV12H,

4DV24H, and LETKF using the same (serial) computer

system described in section 3b. The measurement of the

computing time does not include the ensemble forecasts

because in most operational centers the ensemble

forecasts are required in either type of the assimilation

scheme. On a serial computer, the LETKF computa-

tional cost increases with the size of the local patch,

without including the efficiency gains due to the in-

trinsically parallel characteristic of LETKF (Hunt et al.

2007) compared to 4DVAR.

Figure 3 shows the RMS analysis error for the time

series of the potential temperature for the bottom level

from the experiments listed in Table 3. Note that both

4DVAR and LETKF successfully avoid the large error

spikes that occur in 3DVAR (e.g., day 60 in Fig. 3). The

FIG. 1. Time series of RMS analysis errors in potential temperature at the bottom level from

3DVAR (black line), 3DVAR with the background replaced with the LETKF background

(ensemble men) state (red line), 3DVAR with the background replaced with the LETKF

background state only during the first 50 days (green line), and LETKF (blue line).
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accuracy of the LETKF analysis is between 4DV12H

and 4DV24H. However, 4DV24H shows more varia-

bility in the analysis error between successive 12-h

analyses, reflecting the fact that they are computed

independently.

The spinup time for LETKF depends on the accuracy

of the initial background state in the first analysis cycle,

while this has little influence in 4DVAR. The spinup

time is much longer if LETKF is initialized with the

climatology mean state (not shown). Caya et al. (2005)

also showed that for a realistic storm-scale forecast us-

ing radar data, the advantage of EnKF over 4DVAR

only became apparent after several assimilation cycles.

As discussed in section 4a, the LETKF corrections re-

quire that the ensemble perturbations be representative

of the relevant background growing errors and capable

of depicting the structures of the flow-dependent

background dynamical instabilities. The long spinup

required for LETKF can be avoided if the 3DVAR

analysis is used as the initial condition, because it is

sufficiently close to the true state. Then the spinup times

for LETKF and 4DV24H (10 days) are comparable and

faster than for 4DV12H (15 days). Alternatively, it is

possible to use an algorithm based on the LETKF no-

cost smoother (appendix A) to accelerate the spinup

(KY08).

The flow-dependent structures carried in both

4DVAR and LETKF substantially reduce the large

vertical dependence in 3DVAR analysis errors (Fig. 4),

and the LETKF analysis accuracy is in between

4DV12H and 4DV24H for all levels. Such improvement

is most evident in the variables with large error growth

rates (e.g., the potential temperature at the bottom and

the top levels). Snyder et al. (2003) demonstrated that

TABLE 3. Mean RMS analysis errors of generalized potential vorticity for the 3DVAR, 4DVAR, and LETKF schemes averaged over

80 days (160 analysis cycles) and the corresponding computational times required for one analysis cycle in a single processor. For

4DVAR, the average number of iterations required for the minimization process is included.

3DVAR

4DVAR

LETKF

K 5 20 K 5 40

12H 24H* l 5 5 l 5 3 l 5 5 l 5 7 l 5 9

RMSE (3102) 6.24 2.63 1.75 2.54 3.41 2.39 2.14 2.12

Time (min) 0.007 0.67 (14 iterations) 1.4 (19 iterations) 0.12 0.21 0.36 0.51 0.67

* The value is slightly different from the 24-h 4DVAR in Table 1 because of the use of an overlapped window to derive analysis every

12 h.

FIG. 2. Time series of RMS analysis errors in potential temperature at the bottom level from

LETKF (blue line), LETKF with the background ensemble perturbations replaced with

Gaussian random perturbations drawn from B3dvar (red line), and 3DVAR (black line).
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there is a strong relationship of the perturbations to the

gradient of the reference flow in this QG model, and

with the large gradient of the reference flow concen-

trating at the bottom and top levels, this dominates the

growth of the perturbations. In our study, the accuracy

in the midlevel is also greatly improved with respect to

3DVAR. This can be attributed to the fact that Morss

(1999) used a small vertical correlation in the 3DVAR

errors, whereas the advantage of being flow dependent

allows 4DVAR and LETKF to have vertical correla-

tions that better reflect local instabilities.

Figure 5 shows the analysis and forecast RMSE for

the potential temperature at the bottom level as a

function of forecast lead time up to 5 days for all the DA

schemes. With the setup of the perfect model, the

forecast errors are dominated by the dynamically

growing errors. The forecast skill with LETKF is again

between that of 4DV12H and 4DV24H, and much

better than the 3DVAR forecast error throughout

the integration. We note that during the first 12 h, the

3DVAR forecast error grows more slowly than in the

other schemes, indicating that the 3DVAR initial

analysis error includes not only growing but also non-

growing errors.

To further explain the results, we compare the cor-

rections and errors from 3DVAR, LETKF, and

4DV12H because they have the same length of analysis

cycle using the same observations. Figure 6 presents

12-h forecast (background) (left) errors and (right)

analysis errors in colors, superimposed with the analysis

corrections (contours) at an arbitrarily chosen time for

the three analysis schemes. Figure 6a shows that the

slower 12-h forecast error growth of 3DVAR can be

attributed to the fact that the analysis corrections de-

rived from 3DVAR have isotropic shapes and do not

project well on the structures of the dynamically

stretched errors of the day that dominate the 12-h

forecast errors in LETKF (Fig. 6c) and 4DVAR (Fig.

6e). The importance of these growing errors of the day,

similar to bred vectors or locally leading Lyapunov

vectors (section 4c), has been recognized in several

previous studies (e.g., Corazza et al. 2002; Snyder et al.,

2003).

Figure 6b shows that in 3DVAR the background

errors are partially corrected in the analysis but the

isotropic corrections also introduce errors with shapes

that grow less than the dynamically stretched growing

errors. As a result, the 3DVAR analysis error contains

large amounts of uncorrected growing and nongrowing

errors, and therefore the initial growth of errors in

3DVAR is slower, as observed in Fig. 5. After 12 h, the

stretched, evolving, growing errors dominate the fore-

cast errors (not shown), and the 3DVAR error growth

becomes exponential and similar to the other schemes.

In contrast, the analysis corrections from the LETKF

and the 4DVAR are flow dependent with shapes closely

related to the dynamically growing forecast errors (Figs.

6c,e) and able to remove more (but not all) of the

FIG. 3. Time series of RMS analysis errors in potential temperature at the bottom level from the

3DVAR and 4DVAR systems (12- and 24-h window time) and the LETKF schemes.
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background errors than 3DVAR. The errors left in

the analysis still have shapes related to uncorrected

dynamically growing directions (Figs. 6d,f), which

dominate the error growth (section 4c). Therefore, the

forecast errors from LETKF and 4DVAR show a more

consistent exponential error growth (Fig. 5), related to

the dynamical instabilities.

To quantify the relationship between analysis cor-

rections and errors at the analysis time shown in Fig. 6,

we computed the temporally and spatially averaged

local-explained variance of the analysis error for the

background error, the correction (analysis increment)

for the background error, and the correction for the

analysis error from LETKF, 4DV12H, and 3DVAR

(Table 4). The local-explained variance is computed as

the inner product between two local vectors divided by

the square of the norm of the projected vector. This

essentially measures how much the shapes of the fields

shown in Fig. 6 ‘‘locally’’ agree.

The first column of Table 4 shows that after one

analysis cycle, the analysis errors have shapes that still

agree substantially with the background errors, from

71.5% for the LETKF to 80% in the 3DVAR (a result

that is very apparent comparing the colored fields on the

left- and the right-hand sides in Fig. 6). The second col-

umn indicates that on average, the analysis corrections

capture more than 30% of the background error variance

in the LETKF, a larger percentage than 4DV12H or

3DVAR. This confirms that the corrections from

LETKF are able to remove more background errors

(e.g., from Figs. 6c,d, the LETKF corrections effectively

remove or reduce the large background errors).

That the analysis errors also project on the analysis

increments (third column in Table 4) suggests that al-

though the shapes of the errors are well captured, the

local amplitudes are not always optimal due to the lack

of observations. Because the analysis errors contain the

incompletely removed background errors, the corrections

from LETKF also agree more closely with the analysis

errors than 4DV12H or 3DVAR. We note that this is also

valid for 4DV24H, which gives the most accurate analysis.

With a longer 4DVAR assimilation window, the analysis

corrections from 4DV24H project more on both the

background and the analysis errors (60% and 53%, re-

spectively). Therefore, to obtain accurate analyses, the

analysis corrections from assimilation schemes should

contain the structures that dominate the growth of the

background errors at the analysis time.

c. Initial and final analysis corrections in LETKF and
4DV12H

Swanson and Vautard (1998) showed that the struc-

tures of 4DVAR analysis errors strongly project on the

subspace of the global leading Lyapunov vectors (the

unstable manifold of the system). The strength of these

FIG. 5. Analysis and forecast errors of the potential temperature

at the bottom level as a function of forecast length (days) from

different assimilation schemes.

FIG. 4. Mean RMS analysis error in vertical levels from all

assimilation schemes.
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projections increases as the assimilation window length-

ens, especially for small scales. Considering the local

properties of the low-dimensional dynamical errors

(Patil et al. 2001) and the results from Table 4, we ex-

amine the local structures of the assimilation correc-

tions in the unstable space for both schemes. We use

bred vectors (BVs; a finite amplitude equivalent to the

leading Lyapunov vectors; Toth and Kalnay 1993, 1997)

FIG. 6. (a) Background error (color shades) and analysis corrections (contours) of the potential temperature at the

bottom level from 3DVAR at day 41 1200 UTC; (b) as in (a), except that the color shades are the 3DVAR analysis

errors; (c),(d) Same variables as in (a),(b), but from LETKF; (e),(f) Same variables as in (a),(b), but from the 12-h

4DVAR. The intervals for the contours are 20.03, 20.02, 20.01, 20.006, 20.002, 0.002, 0.006, 0.01, 0.02, and 0.03.
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to represent the fast-growing dynamical instabilities of

the evolving flow and to compare with the 4DVAR and

LETKF analysis increments both at the beginning and

at the end of an assimilation window. The BV shown in

Fig. 7 is randomly chosen from an ensemble of 20 BVs

(appendix B).

To obtain the initial and final increments for a given

assimilation window, we compute the LETKF initial

increment by using a no-cost smoother (Kalnay et al.

2007b). Because the LETKF selects the ensemble tra-

jectory that best fits the data throughout the assimila-

tion window, we use the same weight obtained at the

end of the assimilation window for the analysis incre-

ment [Eq. (17)] to obtain the ‘‘smoothed’’ analysis in-

crements at the beginning of the window (see appendix

A for more details). This smoothed analysis increment

is equivalent to the 4DVAR analysis increment at the

beginning of the window, so that, as in 4DVAR,

evolving the smoothed LETKF analysis forward to the

end of the window approximates the same analysis

computed by LETKF.

Figures 7a,b show the initial and final analysis incre-

ments (color shading) from the LETKF superimposed

on the corresponding BVs (contours). Similarly, the

initial and final 4DV12H analysis increments (color

shading) are superimposed to the corresponding BVs

(contours) in Figs. 7c,d. Both the smoothed initial in-

crement and final analysis increments from the LETKF

have local structures related to the BVs’ structures at

the corresponding times. This indicates that the shapes

of the corrections and their evolutions are strongly

influenced by the local dynamical instabilities. The final

analysis increments from 4DV12H (valid at the end of

the window) also show a similarity with the corre-

sponding BV (Fig. 7d), in agreement with Swanson and

Vautard (1998). However, the initial time analysis in-

crements from 4DV12H have larger scales and are more

isotropic than the BVs due to their stronger dependence

on the initial 3DVAR-like isotropic background error

covariance. Thus, the initial 4DVAR larger-scale anal-

ysis corrections quickly stretch into the dynamical un-

stable structures given by the BVs. As a result, at the

end of the assimilation window, the 4DVAR analysis

makes useful corrections to the background errors (Fig.

7d) that are similar to BVs.

5. Summary and discussion

In this study, data assimilation schemes related to

variational and ensemble methods were implemented

in a quasigeostrophic model. Three different schemes

were compared: 3DVAR, 4DVAR, and LETKF. Ex-

periments were conducted to compare individual per-

formance and to understand their differences. This

information should be useful to operational centers that

face the choice of continuing with 3DVAR or 4DVAR,

or testing ensemble Kalman filters as the next-phase

data assimilation system. Under perfect model condi-

tions, the results focus on the error structure in dif-

ferent data assimilation schemes, using 3DVAR as the

benchmark. We compared the performance of LETKF

with 4DVAR using the same observations with a 12-h

assimilation window or using more time-dependent

observations with a longer window of 24 h.

This study confirms that 4DVAR and LETKF are

superior to 3DVAR because they are able to lower the

overall errors and eliminate large analysis errors spikes

seen in 3DVAR. The corrections made by 4DVAR

and LETKF agree well with the corresponding local

instabilities at the analysis time as depicted by bred vec-

tors (a finite time equivalent of leading Lyapunov vec-

tors). The results also confirm the Pires et al. (1996) result

that using a longer assimilation window with 4DVAR

improves the analysis, although the improvement be-

comes small for windows longer than about 2 days. With

real observations, longer windows also require accounting

for model errors and nonlinearity of the perturbations.

Our results indicate that LETKF, requiring low

computer resources (20 ensemble members and small

local domains of 11 3 11 grid points), gives results

comparable to 4DVAR with a 12-h assimilation win-

dow. With 40 ensemble members, LETKF performs

significantly better than the 12-h 4DVAR. With a larger

local domain of 19 3 19, LETKF provides a result

comparable to 4DVAR with a 24-h assimilation win-

dow. When the initial condition for the first analysis

cycle is close enough to the true state (such as when it is

started from a 3DVAR analysis), the LETKF has a

similar spinup time as the 4DVAR with a 24-h window

and is faster than the 12-h 4DVAR.

The superior performance of LETKF compared to

3DVAR is due to the combined effect of having flow-

dependent perturbation structures related to errors of the

day and to ensemble averaging. By strongly projecting the

TABLE 4. Local explained variance (%) of analysis error for

background error, analysis increments for background errors,

and analysis increments for analysis errors. The local explained

variance is computed in local domains of 11 3 11 grid points and

the averaging is both temporal and spatial.

Analysis

error vs

background error

Analysis

increments vs

background errors

Analysis

increment vs

analysis error

LETKF 71.5 31.3 24.5

4DV12H 77.4 24.9 20.1

3DVAR 80.3 21.7 16.8
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corrections on the local dynamical instabilities, LETKF is

better able to correct the background state (ensemble

mean) with the available observations.

The structures of the analysis increments (corrections)

from these DA schemes were examined to understand

the performance differences between the LETKF and

4DVAR with a 12-h assimilation window. Both the

analysis increments and smoothed initial increments

from the LETKF, obtained using a no-cost smoother,

have local structures characterized by the errors of the

day. Those structures strongly match the BVs valid at

their corresponding times. The initial increments from

4DVAR are larger scale and show weak projections on

the dominant initial BVs, but the 4DVAR analysis in-

crements at the end of the window exhibit strong simi-

larities to the corresponding BVs. This suggests that the

corrections needed in the background state (at the

analysis time) are strongly related to the structures of

BVs (and the final SVs, not shown), that is, to the fast-

growing errors corresponding to the analysis time.

This study considered the performance of 4DVAR

and LETKF under the ‘‘perfect model’’ assumption, so

that in the presence of model errors the performance

could be significantly worse. An important related area

of research is that of hybrid schemes that combine the

ensemble-based and variational assimilation techniques.

FIG. 7. (a) Modified (smoothed, see appendix A) initial increments of LETKF (color shades) and BV (contours) of

the potential temperature at the bottom level at day 41 0000 UTC; (b) as in (a), but for the LETKF analysis

increments and BVs at day 41 1200 UTC; (c) initial increments of the 12-h 4DVAR and BV (contours) at day 41 0000

UTC; (d) analysis increment of the 12-h 4DVAR and BV at day 41 1200 UTC. The contour interval is 0.015.
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Initial studies suggest that this combination can effi-

ciently overcome the limitations of time-independent

background error covariance in the 3DVAR and 4DVAR

schemes (Hamill and Snyder 2000; Corazza et al. 2002;

Etherton and Bishop 2004; Wang et al. 2007).
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APPENDIX A

No-Cost LETKF Smoother

From Eq. (17), the mean analysis computed from the

LETKF at time i is

�x i
a 5 �xi

f 1 Xi
f Wi (A1)

where Wi is a matrix of weights [see (A2) following] and

Xi
f is the matrix whose columns are the ensemble

background perturbations at time i:

Wi 5 ~Pi
a(HXi

f )TR�1[yi
o �H(�xi

f )]. (A2)

Because the weight matrix provides the linear combina-

tion of background perturbations that best fit the obser-

vations within the assimilation window, we can improve

the analysis at the beginning of the time window (at time

i 2 1) by applying a smoother with the same weights, Wi,

to the ensemble perturbations at time i 2 1:

~x i�1
a 5 �xi�1

a 1 Xi�1
a Wi, (A3)

where �x i�1
a and Xi�1

a are the mean analysis and the en-

semble analysis perturbations at time i 2 1, and ~x i�1
a is

the modified analysis at the same time. Although this

smoothed analysis ~x i�1
a at the beginning of the window

does improve the original analysis �x i�1
a , because it uses

the ‘‘future’’ observations available at time i, it ap-

proximates the analysis at time i, as indicated in (A4). In

addition to the effect of the nonlinear model, the ap-

proximation in (A4) considers that the weight, Wi,

varies with locations. Such no-cost smoothing, proposed

by Kalnay et al. (2007b), would be particularly useful in

the context of reanalysis and can be used for acceler-

ating the LETKF spinup by ‘‘running in place’’ (KY08).

Note that in (A4), M is the nonlinear model advancing

the state from time i 2 1 to i and L is the tangent linear

model defined in section 3b:

M(~x i�1
a ) 5 M(�x i�1

a 1 Xi�1
a Wi) ’M(�x i�1

a )

1 LXi�1
a Wi 5 �x i

f 1 Xi
f Wi 5 �x i

a . (A4)

APPENDIX B

The Dynamically Fast-Growing Perturbations

Bred vectors, defined as the differences between

perturbed and nonperturbed nonlinear runs, represent

the fast-growing dynamical instabilities of the evolving

flow and naturally carry information on errors of the

day (Toth and Kalnay 1993, 1997). They are the local

Lyapunov vectors bred through nonlinear integration.

In this study, 20 breeding cycles, initialized from differ-

ent random perturbations, are bred upon the 3DVAR

analyses with a 12-h rescaling interval. The bred pertur-

bations are rescaled uniformly according to the mean

squared 3DVAR analysis error at the midlevel. Also, a

small amount of Gaussian random perturbations are

added to BVs at every breeding cycle to ‘‘refresh’’ BVs

and avoid the tendency of BVs to converge to a too small

dimensional subspace (Wang and Bishop 2003). The

process of refreshing plays an important role in acceler-

ating the BV convergence to the subspace of growing

instability during the transition period and also increases

the BVs’ ability to capture the subspace of the evolving

background errors. Details of the characteristics of the

BVs from this QG model and their relationship to the

errors of the day are discussed in Corazza et al. (2002).

REFERENCES

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for

data assimilation. Mon. Wea. Rev., 129, 2884–2903.

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive

sampling with the ensemble transform Kalman filter. Part I:

Theoretical aspects. Mon. Wea. Rev., 129, 420–436.

Broyden, C. G., 1969: A new double-rank minimization algorithm.

Not. Amer. Math. Soc., 16, 670.

Carrassi, A., A. Trevisan, and F. Uboldi, 2007: Adaptive obser-

vations and assimilation in the unstable subspace by breeding

on the data-assimilation system. Tellus, 59A, 101–113.

Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the

4DVAR and the ensemble Kalman filter techniques for radar

data assimilation. Mon. Wea. Rev., 133, 3081–3094.

FEBRUARY 2009 Y A N G E T A L . 707



Courtier, P., J. N. Thépaut, and A. Hollingsworth, 1994: A

strategy for operational implementation of 4D-VAR, using

an incremental approach. Quart. J. Roy. Meteor. Soc., 120,

1367–1387.

Corazza, M., E. Kalnay, D. J. Patil, E. Ott, J. Yorke, I. Szunyogh,

and M. Cai, 2002: Use of the breeding technique in the esti-

mation of the background error covariance matrix for a

quasigeostrophic model. Preprints, Symp. on Observations,

Data Assimilation, and Probabilistic Prediction, Orlando, FL,

Amer. Meteor. Soc., 154–157.

——, and Coauthors, 2003: Use of the breeding technique to es-

timate the structure of the analysis ‘‘error of the day.’’ Non-

linear Proc. Geophys., 10, 233–243.

——, E. Kalnay, and S.-C. Yang, 2007: An implementation of the

local ensemble Kalman filter for a simple quasi-geostrophic

model: Results and comparison with a 3D-Var data assimi-

lation system. Nonlinear Proc. Geophys., 14, 89–101.

Dey, C., and L. L. Morone, 1985: Evolution of the national me-

teorological center global data assimilation system: January

1982–December 1983. Mon. Wea. Rev., 113, 304–318.

Etherton, B. J., and C. H. Bishop, 2004: Resilience of hybrid en-

semble/3DVAR analysis schemes to model error and en-

semble covariance error. Mon. Wea. Rev., 132, 1065–1080.

Evensen, G., 1994: Sequential data assimilation with a nonlinear

quasigeostrophic model using Monte Carlo methods to fore-

cast error statistics. J. Geophys. Res., 99, 10 143–10 162.

——, 2003: The ensemble Kalman filter: Theoretical formulation

and practical implementation. Ocean Dyn., 53, 343–367.

Fertig, E., J. Harlim, and B. R. Hunt, 2007: A comparative study of

4D-VAR and a 4D ensemble Kalman filter: Perfect model

simulations with Lorenz-96. Tellus, 59A, 96–101.

Fletcher, R., 1970: A new approach to variable metric methods.

Comput. J., 13, 317–322.

Giering, R., and T. Kaminski, 1998: Recipes for adjoint code

construction. ACM Trans. Math. Software, 24, 437–474.

Goldfarb, D., 1970: A family of variable-metric methods derived

by variational means. Math. Comp., 24, 23–26.

Hamill, T. M., 2006: Ensemble-based data assimilation. Predict-

ability of Weather and Climate, T. Palmer and R. Hagedorn,

Eds., Cambridge University Press, 124–156.

——, and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D

variational analysis scheme. Mon. Wea. Rev., 128, 2905–2919.

——, J. S. Whitaker, and C. Snyder, 2001: Distance-

dependent filtering of background error covariance esti-

mates in an ensemble Kalman filter. Mon. Wea. Rev., 129,

2776–2790.

Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation

using ensemble Kalman filter technique. Mon. Wea. Rev., 126,

796–811.

Hunt, B. R., E. Kostelich, and I. Szunyogh, 2007: Efficient data

assimilation for spatiotemporal chaos: A local ensemble

transform Kalman filter. Physica D, 230, 112–126.

Kalman, R. E., 1960: A new approach to linear filtering and pre-

diction problems. J. Basic Eng., 82, 35–45.

——, and R. S. Bucy, 1961: New results in linear filtering and

prediction Theory. J. Basic Eng., 83, 95–107.

Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and

Predictability. Cambridge University Press, 340 pp.

——, H. Li, T. Miyoshi, S.-C. Yang, and J. Ballabrera-Poy, 2007a:

4D-Var or ensemble Kalman filter? Tellus, 59A, 758–773.

——, ——, ——, ——, and ——, 2007b: Response to the discussion

on ‘‘4-D-Var or EnKF?’’ by Nils Gustafsson. Tellus, 59A,

778–780.

Kim, H. M., M. C. Morgan, and R. E. Morss, 2004: Evolution of

analysis error and adjoint-based sensitivities: Implications for

adaptive observations. J. Atmos. Sci., 61, 795–812.

Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms

for analysis and assimilation of meteorological observations:

Theoretical aspects. Tellus, 38A, 97–110.

Liu, D. C., and J. Nocedal, 1989: On the limited memory BFGS

method for large scale optimization. Math. Program., 45, 503–528.

Lorenc, A. C., 1986: Analysis methods for numerical weather

prediction. Quart. J. Roy. Meteor. Soc., 112, 1177–1194.

——, 2003: The potential of the ensemble Kalman filter for

NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor.

Soc., 129, 3183–3203.

Miyoshi, T., 2005: Ensemble Kalman filter experiments with a

primitive-equation global model. Ph.D. dissertation, Univer-

sity of Maryland, College Park, 197 pp. [Available online at

http://hdl.handle.net/1903/3046.]

——, and S. Yamane, 2007: Local ensemble transform Kalman

filtering with an AGCM at a T159/L48 resolution. Mon. Wea.

Rev., 135, 3841–3861.

Morss, R. E., 1999: Adaptive observations: Idealized sampling

strategies for improving numerical weather prediction. Ph.D.

thesis, Massachusetts Institute of Technology, 225 pp.

——, K. A. Emanuel, and C. Snyder, 2001: Idealized adaptive

observation strategies for improving numerical weather pre-

diction. J. Atmos. Sci., 58, 210–232.

Navon, I. M., X. Zou, J. Derber, and J. Sela, 1992: Variational data

assimilation with an adiabatic version of the NMC spectral

model. Mon. Wea. Rev., 120, 1433–1446.

Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for

atmospheric data assimilation. Tellus, 56A, 415–428.

Parrish, D., and J. Derber, 1992: The National Meteorology Cen-

ter’s spectral statistical-interpolation analysis system. Mon.

Wea. Rev., 120, 1747–1763.

Patil, D., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2001:

Local low dimensionality at atmospheric dynamics. Phys. Rev.

Lett., 86, 5878–5881.

Pires, C., R. Vautard, and O. Talagrand, 1996: On extending the

limits of variational assimilation in chaotic systems. Tellus,

48A, 96–121.

Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A.

Simmons, 2000: The ECMWF operational implementation of

four-dimensional variational assimilation. I: Experimental results

with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143–1170.

Rotunno, R., and J. W. Bao, 1996: A case study of cyclogenesis

using a model hierarchy. Mon. Wea. Rev., 124, 1051–1066.

Shanno, D. F., 1970: Conditioning of quasi-Newton methods for

function minimization. Math. Comp., 24, 647–657.

Simmons, A. J., R. Mureau, and T. Petroliagis, 1995: Error growth

estimates of predictability from the ECMWF forecasting

system. Quart. J. Roy. Meteor. Soc., 121, 1739–1771.

Snyder, C., T. M. Hamill, and S. B. Trier, 2003: Linear evolution of

error covariances in a quasigeostrophic model. Mon. Wea.

Rev., 131, 189–205.

Swanson, K., and R. Vautard, 1998: Four-dimensional variational

assimilation and predictability in a quasi-geostrophic model.

Tellus, 50A, 369–390.

Szunoygh, I., E. J. Kostelich, G. Gyarmati, D. J. Patil, E. Kalnay, E.

Ott, and J. A. Yorke, 2005: Assessing a local ensemble Kalman

filter: Perfect model experiments with the National Centers for

Environmental Prediction global model. Tellus, 57A, 528–545.

Talagrand, O., 1997: Assimilation of observations, an introduction.

J. Meteor. Soc. Japan, 75, 191–209.

708 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



——, and P. Courtier, 1987: Variational assimilation of meteoro-

logical observations with the adjoint vorticity equation. I:

Theory. Quart. J. Roy. Meteor. Soc., 113, 1311–1328.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The

generation of perturbations. Bull. Amer. Meteor. Soc., 74,

2317–2330.

——, and ——, 1997: Ensemble forecasting at NCEP and the

breeding method. Mon. Wea. Rev., 125, 3297–3319.

Wang, X., and C. H. Bishop, 2003: A comparison of breeding and

ensemble transform Kalman filter ensemble forecast schemes.

J. Atmos. Sci., 60, 1140–1158.

——, C. Snyder, and T. M. Hamill, 2007: On the theoretical

equivalence of differently proposed ensemble/3DVAR hybrid

analysis schemes. Mon. Wea. Rev., 135, 222–227.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimila-

tion without perturbed observations. Mon. Wea. Rev., 130,

1913–1924.

——, ——, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data

assimilation with the NCEP Global Forecast System. Mon.

Wea. Rev., 136, 463–482.

Yang, S.-C., 2005: Appendix B: Errors of the day, bred vectors

and singular vectors in a QG atmospheric model: Implica-

tions for ensemble forecasting and data assimilation. Bred

vectors in the NASA NSIPP Global Coupled Model and

their application to coupled ensemble predictions and data

assimilation. Ph.D. thesis, University of Maryland, College

Park, 174 pp. [Available online at http://hdl.handle.net/1903/

2477.]

FEBRUARY 2009 Y A N G E T A L . 709


