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In the present paper, a methodological framework to move from risk assessment to resilience assessment is described.
In order to demonstrate the practical capability of the outlined methodology reference is made to a LNG (Liquefied
Natural Gas) bunker activity for a cruise ship. The focal point to assess the resilience of a system is the identification
of precursor events, which refers to early detection of “weak” signals from the system during the operations. In order
to identify the precursors, a large amount of data analytics is needed. By data processing, validation and analysis, it
is possible to predict the behaviour of the system, thus catching the guide-words for a resilient performance. Starting
from the operative steps of LNG bunker activity in the maritime field, various coupled Data Driven BNs can be built,
which involve the probability of operational perturbations, and their updates based on the hard and soft evidences
during the operation. Ship propulsion by LNG as a possible fuel (with dual fuel engines installed on board) implies
to deepen safety issues that might be involved in the LNG bunkering operations. Not so many investigations are
available in literature at present and the paper is aimed to frame the most significant critical aspects about this topic.
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Bayesian Networks, Decision Support System.

1. Introduction from the prescriptive approach to the performance

based one.

Resilience assessment integrates a set of key con-
cepts to provide an innovative way of thinking
about, and practicing, safety management. Re-
silience is fundamentally a system property. It
refers to the magnitude of change or disturbance
that a system can experience without shifting into
an alternate state that has different structural and
functional properties. The application of this pow-
erful concept is very versatile and it represents
a very interesting opportunity to discuss about
safety performances of a very complex system,
i.e. when safety as a performance is the out-
come of a successful interaction among different
elements and sub-systems. Under this perspec-
tive safety can be defined as a emergent property
where resilience is the key enabling property. The
increasing interest in the resilience assessment is
to be understood in the deep change of paradigm

The risk assessment is a very useful approach
in support of this change but at the same time
it is not exhaustive to capture also the possible
“failure” in the interface/interaction among the
several single components of a complex system
beside their specific failures. One of the reasons
for the superior attention to resilience is the recent
increased capability of data measurement /storage
and relevant treatment for developing knowledge.
Resilience thinking embraces learning, diversity
and how to adapt to a wide range of complex
challenges. The resilience approach to safety
management is focused and driven by the case
studies tackling a variety of critical infrastructures
and it is built upon the so called “big data”.
There is no single accepted set of components
of resilience, so, the framework proposed in the
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present paper, which is strictly related to the state-
of-art of scientific literature, represents a robust
approach to a systemic vision of safety manage-
ment. What above described in terms of shift
of safety paradigm is perfectly applicable to ship
design and production especially for very complex
units like passengers ships. The kind of contin-
uous innovation trend together with the increas-
ing importance of ship performances as emergent
properties constitutes a very interesting field of
applications to get a further insight into the issue.
Actually, the application case here investigated is
relevant to a cruise ship, since it represents a very
interesting topic when dealing with environmental
and accident hazards (Vairo et al.[2017). The pro-
posed study specifically focuses on the peculiar
issue of LNG refuelling. In any case it can be
considered a good example in order to propose
a complete approach based on the methodology
description and on the metrics identification.

2. A new safety paradigm

The evolution of the safety paradigm from safety-I
to safety-1II implies safety defined as the ability to
succeed in a context of varying conditions (Holl-
nagel, Woods, and Leveson 2006). The change of
mind-set is epochal: the practical implication is
the need to understand and describe the systems
everyday functional performance and its variabil-
ity as well. Focusing on what goes right, rather
than on what goes wrong, shifts the focus from
"avoiding that something goes wrong’ to ’ensuring
that everything goes right’ (Hollnagel |2014). The
target implied in Safety-II is to make things go
right but with the essential acknowledgment that
performance variability is ineluctable: therefore it
is necessary as well to find ways to monitor and
control this variability (Hollnagel 2016).

The change of paradigm derives from the evidence
that the complexity of systems (especially when
also the socio-organizational levels are included)
is continuously increasing together with the eco-
nomic pressure.

Traditional safety analysis and a risk assess-
ment might not be appropriate anymore since the
complexity of systems implies a significant diffi-
culty to consider all the situations where some-
thing can go wrong (Hollnagel 2017). In this
regard, resilience is considered an important ca-
pability needed by the 21st century systems (Or-
doukhanian and Madni 2019).

In the latest decades the term resilience has over-
flown from the material science (ability of a ma-
terial to absorb energy when it is deformed elas-
tically, and release that energy upon unloading)
to other different fields like ecology, psychology,
infrastructures and complex systems in general.

It should be remarked that environmental risk as-
sessment within the wide framework of Seveso

Directive is an appealing research area, still under
development, and bringing out novel topics to be
thoroughly discussed and faced by advanced tools
(Sikorova et al. 2017)).

Resilience has been defined in literature as “the
ability of the systems to adapt to changing con-
ditions in order to maintain a system property”
(Leveson et al. [2000). In other words ”a system
is resilient if it can adjust its functioning prior
to, during, or following events (changes, distur-
bances, and opportunities), and thereby sustain
required operations under both expected and un-
expected conditions (Hollnagel 2014).

However quantitative metrics of resilience are not
well established and further investigations about
approaches and techniques are needed (Lloyd’s
2015, Beach et al. [2018)).

In this paper a methodology based on data analyt-
ics will be proposed and applied in the context of
a LNG refuelling operation for a ship.

3. The methodology for the resilience
assessment

Hollnagel (Hollnagel 2017) proposed the follow-
ing four needs for resilient performance:

The ability to respond
The ability to monitor
The ability to learn

The ability to anticipate

The quantitative risk assessment process is crucial
for an effective control of major accident hazard
but, as thoroughly discussed in Vairo et al. 2019,
is affected by several limitations, essentially con-
nected to its inherent static nature. Newly devel-
oped frameworks, including dynamic ones, were
recently developed and applied to improve the
effectiveness of accident investigations, e.g. Fabi-
ano et al.[2016/

A main weakness is also represented by the large
error bands associated with data for the likelihood
of equipment, e.g. the likelihood of leaks different
size spills from pipes, valves etc. obtained from
various published sources.

The focal point to assess the resilience of a system
is the identification of precursor events, which
refers to early detection of “weak” signals from
the system during the operations (Jain et al. 2018]).
In order to identify the precursor events and thus
maintain stability by applying appropriate adjust-
ments, the analysis of a large amount of data is
needed. By the data analysis, it is possible to
predict the behaviour of the system, thus catching
the resilient performance according to the above
mentioned 4 guide-words.

During the last decade the so-called data-driven
models are becoming more and more widespread.
These models rely upon the methods of computa-
tional intelligence and machine learning, and thus
assume the presence of a considerable amount of
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data describing the modelled system’s physics.
Data-driven modelling can thus be considered as
an appropriate approach to resilience assessment
that would complement the “knowledge-driven”
models describing physical behavior.

The Bayesian approach has been proven to be
a robust probability reasoning method under un-
certainty, providing a tool for incorporating the
evidences during operations. It can perform
a forward and backward inference, and can be
used to conduct operational reliability analysis in
complex systems (Vairo et al. 2019, Kalantarnia,
Khan, and Hawboldt 2008)).

Starting from the operative steps of LNG bunker
activity in the maritime field, various coupled BNs
can be built, which involve the probability of op-
erational perturbations, and their updates based on
the hard and soft evidences during the operation.
Ship propulsion by LNG as a possible fuel (with
dual fuel engines installed on board) is becom-
ing more and more widespread, especially in the
cruise ships market. This innovative solution im-
plies to deepen safety issues that might be in-
volved in the LNG bunkering operations.

When dealing with flammable HazMat, potential
loss of containment must be considered of pri-
mary importance in relation with storage tanks
and piping, where in case of accident the dominant
scenario is pool fire (Palazzi et al. 2017). How-
ever, the probability of a scenario evolution can
be affected by large uncertainties in its evaluation,
mainly connected to the possibility of immediate,
or delayed ignition.

Not so many investigations are available in litera-
ture at present and the paper is aimed to frame the
most significant critical aspects of such probabil-
ity evaluation.

The logic diagram for the proposed resilience as-
sessment framework, in terms of stepwise proce-
dure, is shown in Fig. 1.

3.1. Identification of precursors

The main point of the proposed resilience assess-
ment is the identification of precursors.

This stage can be performed by coupling two
powerful techniques:

e Probabilistic modelling
e Bayesian modelling

The first stage of the process is to catch the prob-
abilities of precursor events occurrences. The
starting point is a safety assessment of the system,
by a FTA (Fault Tree Analysis), and then a change
from the “frequency based” perspective to the
“Bayesian” perspective.

The three main steps are:

(i) Establish a belief about the data, including
prior and likelihood functions.
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(i) Use the data and probability, in accordance
with our belief of the data, to update our
model, check that our model agrees with the
original data.

(iii)) Update our view of the data, based on our
model.

In order to follow the above mentioned step, the
tools used in the present work are Markov Chain
— MonteCarlo (MCMC) and Bayesian Networks
(BNs).

MCMC is a class of techniques for sampling from
a probability distribution and can be used to esti-
mate the distribution of parameters given a set of
observations.

So, it is possible to estimate the parameters of
a logistic function that represents the precursors
occurrence patterns:

1
T4 epra D

We used the PyMC3 implementation of the
Metropolis-Hastings (MCMC-MH) algorithm to
compute the distribution space of « and [, thus
deriving the most likely logistic model.

The precursors are identified starting from the
frequencies in FTA. Between the “safe” state and
the “failure” state, one intermediate state is in-
serted, which probabilities are derived from the
Metropolis-Hastings algorithm.

The idea behind Bayesian thinking is to keep up-
dating the beliefs as more evidence is provided.
In the philosophy of decision making, Bayesian
inference is closely related to the Bayesian view
on probability: it manipulates priors, evidence,
and likelihood to compute the posterior, according
to the Bayes theorem:

P(precursor | t,a, 8) =

P(D | 6) P(6)
PO|D)= 2
#1D)= =255 @
Where:
e P(0 | D) is the posterior
e P(D | 0) is the likelihood
e P(0) is the prior
e P(D) is the evidence

In other words, we would like to find the most
likely distribution of 6, the parameters of the
model explaining the data, D.

MCMC allows us to draw samples from a distri-
bution, even if we can’t compute it. It can be used
to sample from the posterior distribution (what we
wish to know) over relevant parameters. It has
seen much success in many applications where the
need is to compute the distribution of parameters
given a set of observations and some prior belief.
Metropolis-Hastings is a specific implementation
of MCMC.

This technique requires a simple distribution
called the proposal Q(6” | ) to help draw samples
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from an intractable posterior distribution

P(©=0 | D).

Metropolis-Hastings uses Q to randomly walk
in the distribution space, accepting or rejecting
jumps to new positions based on how likely the
sample is. The Markov Chain part (the random
walk) is needed because failures are memory-less
processes.

To decide if 6’ is to be accepted or rejected, the
following ratio must be computed for each new
proposed 6’:

[T} £(d: | © = 0)P ()
I17 F(d: | © = 0)P(6)

Where f is the above mentioned proportional func-
tion. The rule for acceptance is:

3)

P(accept) =(3)if 3) < 1
1 otherwise

This means that if a 6’ is more likely than the
current 6, then we always accept 0°. If it is less
likely than the current 8, then we might accept it or
reject it randomly with decreasing probability, the
less likely it is (Salvatier, Wiecki, and Fonnesbeck
2016).

4. Applicative case study: LNG
bunkering

In the latest decades, important rules addressing
ships environmental impact, with specific focus on
the exhaust gas effect on air pollution, (MARPOL,
Annex VI) where developed and issued by the
International maritime Organization (IMO).

At present the use of LNG as fuel is among the
most successful solutions in order to comply with
the MARPOL requirements. This is in fact the

Resilience assessment framework.

preferred solution for new buildings, especially in
the field of cruise ships. Present solutions adopt
a dual fuel engine able to use both oil and gas.
Engines that are designed for and use LNG won’t
need to also install scrubber systems or pay high
prices for low sulphur fuel.

LNG is natural gas cooled to approximately -
260°F (-162.7°C). This enables the gas to be easy
to store and transport to various locations.

The most notable benefits and advantages of using
LNG is cleaner emissions and lower cost.

In its liquefied state, LNG is odourless, colourless,
non-toxic, and non-corrosive.

LNG releases no sulphur, 99% less particulate
emissions, 85% less NOx emissions, and 25% less
greenhouse gas emissions.

As a consequence, LNG can be regarded as an
inherent cleaner fuel allowing to obtain a sharp
reduction of critical pollutant emissions (Vairo
et al.[2014).

A main issue implied by the adoption of LNG as
fuel is the lack of bunkering (fuelling) facilities
available yet, so getting an LNG-powered ship re-
fuelled be problematic.

Though there are plans for more fuelling depots
to be established for LNG ships, some worries
are related to the possible threat this plant and
their operational activity might originate: several
administration and port authorities are addressing
the safety issues the refuelling operations might
imply for citizens and coastal environments.
Basically the possible solutions now under de-
velopment in Europe and worldwide are (EMSA
2018):

(i) Truck-to-Ship - TTS
(i) Ship-to-Ship - STS
(iii) Terminal (Port)-to-Ship -PTS
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For the purpose of this paper, the resilience assess-
ment will be carried out for the case of shore to
ship refuelling and a schematic layout is depicted
in figure 2 (rif. DNV-GL 2015):

The basic steps of the bunkering process are
summarized as follows, derived with some sim-
plification from EMSA [2018;

e precooling of the line (landside), cargo pump
included;

e actions to avoid ground fault arcing;

e loading arms are usually used for bunker hose
connection;

e the hose is put in place;

e inert gas are used to remove oxygen and mois-
ture from the piping of the receiving ship;

o then the receiving system is purged from the

residual nitrogen using the natural gas remained

in the LNG tank on board the ship;

closure of the onshore side valve;

closure of the ship side valve;

liquid line stripping;

bunker line inerting;

disconnection of the bunkering hose.

For the purpose of this paper a specific attention
will be given to the liquid transfer phase, with
focus on:

e analysis during the actual bunkering phase
e analysis during the immediate post bunkering
phase with the pressure increment

The whole resilience assessment can be very
large; in order to understand the validity of the
proposed methodology the investigation will be
limited to the leakage hazard originated in the
part of the system between the two flanges of the
connecting hose, technically indicated as “LNG
transfer system” (ISO[2018).

4.1. FTA and BNs

The developed FTA related to leakage hazard orig-
inated in the LNG transfer system is shown in the
figures 3, 4, 5 and 6.

The probabilities of failures of the single com-
ponent are taken from literature (Lees [2012)).
Between the safe state and the failure state, one
intermediate state is inserted, in order to identify
the precursors.

The estimation of precursors distribution is per-
formed by means of MCMC-MH algorithm.

4.2. Precursors and Probabilistic
Bayesian Reasoning

A conventional fault tree has a converging struc-
ture that describes how a group of root events
can lead to a top event. This logical structure
enables causality reasoning between root events
and top event; it allows performing both forward
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and backward analysis.

For quantitative reasoning, however, only statisti-
cal and static information is available. To calcu-
late the probability of occurrence of a top event,
the probabilities of the root events have to be
either estimated from statistical data or specified
by expert knowledge. Furthermore, the basic
events are assumed to be statistically independent
each other (Yu, Khan, and Veitch 2017). The
limitations of FTAs can be easily overcome using
the Bayesian probabilistic approach by applying
the MCMC-MH algorithm.

The FTAs can be dynamized by considering the
root failures frequency as prior probabilities, and
then performing the MCMC-MH simulation.

The posterior probabilities are estimated making
reference to the solution of the FTAs, as depicted
in Figures 7, 8, 9.

Figures 10, 11 and 12 show the values of
leakage probability in each iteration, observing
only 5% of the original population (i.e. the “ev-
idences”).

5. Key resilience considerations

From the simulations described above, we are
able to anticipate root failures (and consequently
to avoid leakages) by analysing the data coming
from the operations.
The failure state is anticipated by the intermediate
state.
Table 1 summarizes the expected probabilities for
the states of the root components (expressed in
terms of Maximum Likelihood Estimation), ob-
tained by the Bayesian analysis:

Information could lead to identify the weak
signals in the whole system.
Recalling the four needs for resilient performance,
we have:

e The ability to respond.
the system is able to identify the precursors
occurrences during the operations.

o The ability to monitor.
The system is able to analyse data coming from
the plant.

e The ability to learn.
The Bayes theorem is the chosen machine
learning algorithm. The training dataset is con-
stantly updated by the evidences.

e The ability to anticipate.
The opportunity of identifying the precursor
events, allows to anticipate any leakages, and
to avoid them, by taking possible countermea-
sures.

The probabilistic nature of the perturbations, and
thus of their associated outcomes, necessitates a
probabilistic scoring system for resilience. Fur-
thermore, the multitude of plausible scenarios,
each one with associated probability distribution,
necessarily limit any scoring system to specific
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Fig. 2. Representative layout of a shore to ship LNG refuelling plant.
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Fig. 5. Connection FT.

classes of representative perturbation, without
prejudice to the possibility of inserting new ones
derived from the system application in the field.

The resilience of the whole system can thus be
expressed as an indication of how close the system
performance is to the precursors. What is needed
is to insert the time variable in the simulation,
in order to know how the state of the plant is

00000 00005 00010 00015 00020 00025 00030 00035
Fig. 4. Shoreside FT. Fig. 7. Posterior pdf of leakage on the shoreside plant.

Connection error

[ p=o013 | [ p=0ss | 0.000 0.001 0002 0003 0004

Fig. 8. Posterior pdf of leakage on the shipside plant.

changing in time.

That could be done applying a Bayesian survival
model, to perform a survival analysis using Gaus-
sian random walks. So it is possible to represent
the resilience score with a parameter varying be-
tween 1 (system safe) and O (system failure). The
value of the resilience parameter can be updated
with the state coming from the previous men-
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Table 1. Expected probabilities of occurrences of
possible states in the root components.

Root component Expected probability

. (MLE)
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 Shoreside valve
Fig. 9. Posterior pdf of leakage on the connection hose. safe 0.197
intermediate 0.784
failure 0.029
0.003 Pump
0.002
0.001 safe 0.162
0000 intermediate 0.803
) 200 00 600 800 failure 0.035
Fig. 10. Probability of leakage on the shoreside plant in each Shoreside pipeline
iteration.
safe 0.321
intermediate 0.612
failure 0.067
0.004
0.003 Hose
0.002
0.001 safe 0.087
0.000 . . . . intermediate 0.854
o 200 400 600 800 fail 0.059
Fig. 11. Probability of leakage on the shipside plant in each Shipside valve
iteration.
safe 0.197
. intermediate 0.784
tioned random walks. .
o failure 0.029
Each step of the overall resilience score takes
into account the CDF (Cumulative ngtribution Shipside pipeline
Function) of the different states probability.
Figure 13 represents how the resilience score (as safe 0.321
defined above) is changing during the operation, intermediate 0.612
when different perturbative situations appear. failure 0.067

0.003

0.002

0.001

0.000

0 200 400 &80 a00

Fig. 12. Probability of leakage on the connection hose in
each iteration.
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Fig. 13. Resilience score in different perturbative situations.

6. Conclusions

The idea behind the resilience analysis is that
safety is an emerging property of the system. This
work has shown how it is possible to evaluate
the system’s resilience through dynamic analysis,
connected with what is happening in the plant at
that precise moment operation in progress.

The approach used in this work, based on
Bayesian statistical modeling and probabilistic
machine learning, which focuses on advanced
Markov chain Monte Carlo and variational fitting
algorithms, has proven to be a useful and flexible
tool to study, analyse and verify the achievement
of the four basic needs of the resilience paradigm.
The proposed score metric can represent a valid
indicator to define how much the perturbations of
system and subsystems can be absorbed without
leading to failure.

Moreover, performing a resilience assessment,
can help decision makers and planners to pursue
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environmental and safety objectives more effec-
tively.

As far as the specific application case, in rela-
tion with the plausibility of assumed input data,
it seems that the LNG bunkering operation of
a ship is characterized by satisfactory resilience
property.

Further development of this versatile and robust
approach could entail the environmental param-
eters as well, investigating their influence on the
resilience assessment.
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