
The AMS Board on Enterprise Communication set goals and prepared a road map of tasks 

for enterprise sectors—led by the National Weather Service—to work on together to make 

uncertainty information integral to hydrometeorological forecasts.

I	magine it is a July afternoon and you are scheduled  
	to take a f light from Washington, D.C., to  
	Cleveland. You check in, go through security, 

and then head to your gate where a signboard says 
your flight is “on time.” Meanwhile, thunderstorms 
start to develop along the middle of your route. In 
response, air traffic controllers try to reroute planes. 
A ground halt is declared for other planes prepar-
ing to f ly through the thunderstorm zone. Delays 
develop, and the plane that you would have boarded 

is rerouted and becomes late. When it finally arrives 
at Ronald Reagan Washington National Airport 
(DCA), it is determined that the crew will exceed its 
legal flight length maximum if the flight to Cleveland 
goes forward. With no other crew immediately avail-
able, your flight is canceled. You try to rebook, all the 
while thinking there has to be a way of avoiding such 
cancellations. There is such a way being planned for 
the next generation of air travel, and it involves the 
use of weather forecast uncertainty information to 
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anticipate future delays and minimize their impact 
(see sidebar and FAA 2011).

A great success of twentieth-century science and 
technology was developing the ability to forecast 
future weather conditions. The skill and accuracy 
of these forecasts have increased enough to improve 
decisions protecting life and property; health; national 
defense and homeland security; and socioeconomic, 
ecosystem, and individual well-being. Beyond the 
1–2-week “weather regime,” much progress has also 
been made in predicting expected conditions (e.g., 
above or below normal temperature, precipitation, 
drought, and storminess) associated with seasonal to 
interannual climate variability (e.g., El Niño) and even 

longer-term, scenario-based climate change. However, 
despite these successes, weather, water, and climate 
(hydrometeorological) forecasts are far from perfect. 
Errors in forecasts adversely affect not only decisions 
and outcomes but also decision makers’ confidence in 
using the forecast information in the first place.

Forecast uncertainty depends on many factors. 
Generally, it increases as the forecast lead time (re-
ferred to here as forecast lead) increases. Forecast un-
certainty also increases more quickly for smaller-scale 
(size and duration) phenomena, such as tornadoes 
and thunderstorms, than for larger-scale phenomena, 
such as a winter storm (Fig. 1). Additionally, forecast 
uncertainty grows more quickly in dynamically 

EXAMPLES OF THE USE AND BENEFITS OF FORECAST UNCERTAINTY INFORMATION

Currently, weather impacts are associ-
ated with 70% of all air traffic delays 

within the National Airspace System, 
amounting to a cost of ~$28 billion 
per year, and about two-thirds of these 
delays could be avoided with better 
weather information (Abelman et al. 
2009). These delays and costs are 
projected to escalate over the next 15 
years as air traffic demand doubles or 
triples by 2025 (NRC 2008). A key goal 
of the Federal Aviation Administration’s 
(FAA) Next Generation Air Transpor-
tation System (NextGen) is to reduce 
these delays by improving weather 
information and the use of weather in-
formation in air traffic management de-
cision making (FAA 2011). Documented 
NextGen requirements (JPDO 2007) 
for improved weather information 
already include probabilistic weather 
forecasts. A study by Keith and Leyton 
(2007) showed that one airline alone 
could potentially save $50 million an-
nually on domestic flights by relying on 
probabilistic terminal weather forecasts 
to save fuel and other associated costs. 
Another study (Steiner et al. 2008) 
showed how en-route weather proba-
bility information can be translated into 
anticipated airspace capacity reductions 
and consequently into shorter delay 
times and substantial cost savings, by 
enabling aircraft to fly shorter routes 
around weather hazards.

The military needs forecast 
uncertainty information to identify, 
assess, and mitigate risk resulting from 
hydrometeorological hazards during 

military operations. For example, 
atmospheric and oceanic hazards 
(e.g., strong winds and high seas) pose 
risks for ships at sea, and flood and 
high-water hazards impact ground-
based operations. Forecast probabilities 
(obtained by using ensemble predic-
tion systems and/or other techniques) 
of these and other hazards exceeding 
certain thresholds (with escalating 
impact on the mission) can be used in 
so-called Operational Risk Management 
(ORM) tools (OPNNAV 2010). The 
U.S. Navy is developing one such 
capability employing ORM to translate 
objective weather uncertainty guidance 
directly to piracy risk. In particular, the 
U.S. Department of Transportation 
Maritime Administration estimates that 
piracy around the Horn of Africa costs 
the U.S. maritime industry between 
$1 billion and $16 billion per year 
(Chalk 2009). Pirates operate in small 
vessels and therefore are particularly 
vulnerable to adverse wind and seas. 
The hypothesis is that pirate activ-
ity will likely be lower in areas of high 
meteorological risk compared to low 
risk. The Fleet Numerical Meteorology 
and Oceanography Center ensemble 
forecasts are used to identify the prob-
ability of various thresholds of surface 
winds and seas, enabling an assessment 
of piracy risk. Knowledge of the risk 
that pirates will assume by operating in 
a particular region at a particular time 
can be exploited to protect shipping 
through various forms of interdiction 
and avoidance efforts. In the example 

shown in Fig. S1, the meteorological risk 
to pirates operating in the Mogadishu 
area is much smaller than near the Gulf 
of Aden area at hour 84 (the pattern of 
risk changes with forecast lead). There-
fore, based on this risk, pirate activity 
would be expected to be higher in the 
Mogadishu area. With this tool based 
on multivariate meteorological forecast 
uncertainty information, decision mak-
ers can take action, for example, by 
moving naval assets to areas that are 
favorable for piracy activity, providing 
divert recommendations to shipping, or 
other means.

The energy sector is one of the 
most weather- and climate-sensitive 
sectors of the economy, and a 
near-term challenge is establishing 
the smart energy grid. The current 
grid limitations and vulnerability 
to failure are reported to cost the 
nation $80 billion–$188 billion per 
year in losses due to power outages 
and power quality issues (Repower 
America 2010). To improve en-
ergy production and management, 
a probabilistic integrated renewable 
energy resource forecast of variability 
and thresholds, such as accumulated 
precipitation, wind, and solar radiance, 
could be utilized. The transformation 
of probabilistic climate forecasts into 
probabilistic energy demand, produc-
tion, and operational risk scenarios is 
a high priority for predicting electricity 
consumption and peak load.

Probabilistic hydrometeorological 
forecasts could also be used to increase 
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business productivity and com-
petitiveness as well as enhance public 
well-being, especially with respect to 
public health. For example, it has been 
estimated that in the United States poor 
air quality causes as many as 60,000 pre-
mature deaths each year, and the cost 
associated with air pollution–related 
illness alone ranges from $100 billion 
to $150 billion per year (NOAA 2010). 
Probabilistic forecasts could provide 
earlier notice about the risk for poor 
air quality to individuals and communi-
ties and help them limit exposure and 
reduce asthma attacks; eye, nose, and 
throat irritation; and other respiratory 
and cardiovascular problems and there-
fore save lives. Although it is difficult to 
estimate how many lives and costs could 
be saved with accurate and reliable air 
quality predictions, assuming that such 
predictions reduce by 1% the prema-
ture deaths and the costs listed above, 
about 600 lives and more than $1 billion 
(NOAA 2009) could be saved each year.

Two other examples that could 
benefit from probabilistic information 
are ocean-state and ecosystem fore-
casts.1 A forecast of the ocean state 
would include probabilistic sea surface 
temperature forecasts but also, as the 
need arises, probabilistic forecasts of 
elements such as oil concentration. 
The spring 2010 Deepwater Horizon 
oil spill in the Gulf of Mexico provided 
a general illustration of the difficulties 

in quantifying 
uncertainty 
as well as the 
potential benefits. 
Uncertainty 
estimates for the 
amount of oil 
leaking changed 
dramatically in the 
weeks and months 
after the spill. 
A more precise 
quantification of 
the uncertainty 
of oil flows from 
the wellhead may 
have changed the 
actions of both 
governmental and 
industrial officials. 
During future oil 
spills, ensemble 
prediction tech-
niques applied to 
the ocean would 
provide a range 
of estimates of 
oil concentra-
tions and how 
they would evolve 
with time. These oil concentration 
estimates could then be used as inputs 
to models of affected ecosystems 
(e.g., along the Gulf Coast), yielding 
probabilistic estimates of the range of 
impacts. This impact information could 

be used to prioritize and appropriately 
target cleanup resources and marshal 
solutions more quickly. For example, 
perhaps resources would be targeted 
to the most vulnerable ecosystems at 
highest risk.

Fig. S1. Example 84-h forecast of the meteorological 
risk to pirates operating around the Horn of Africa 
(i.e., the risk to pirates operating in an area due to me-
teorological conditions) scaled from high risk (orange) 
to low risk (green).

1	Here, ecosystem forecasts refer to the prediction of the impacts of physical, chemical, biological, and human-induced change on 
ecosystems and their components (Valette-Silver and Scavia 2003).

active regions around storms than in the middle of 
quiescent, fair-weather regimes. Typically by two 
weeks, uncertainty is large enough that forecast skill 
(predictability) is lost for nearly all types of weather 
(Simmons 2006; Tribbia and Baumhefner 2004) 
and the predictability/uncertainty of climate-scale 
anomalies becomes the question.

Uncertainties in hydrometeorological forecasts 
can be reduced through improved observations, data 
assimilation, and numerical modeling techniques. 
However, forecast uncertainty can never be com-
pletely eliminated no matter how much science and 
technology are applied to the problem because the 
atmosphere, oceans, and related Earth systems are 

inherently chaotic. According to chaos theory (Lorenz 
1963), popularly known as the “butterfly effect,” nearly 
perfect routine forecasts can never be achieved be-
cause of the exponential growth of unavoidable very 
small errors (perturbations) in forecast model initial 
conditions.

Despite a growing theoretical understanding of 
forecast uncertainty and an increasing ability to 
quantify it with ensemble prediction techniques, “de-
terministic” forecasting is still standard for most hy-
drometeorological applications. As the name implies, 
the goal of deterministic forecasting is to determine 
and communicate a single, most accurate value for a 
future hydrometeorological element, such as tomor-
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row’s high temperature. Although there are notable 
exceptions, such as hurricane track, wind and storm 
surge forecasts, and precipitation forecasts, most 
current operational forecast products and services 
are based on single-value predictions with little or no 
accompanying forecast error or uncertainty infor-
mation. In part, deterministic forecasts likely have 
been the format of choice because the public desires 
easy-to-understand, unambiguous predictions. In 
some cases, communication time and format restric-
tions have also played a significant role in the choice 
of presentation formats. For example, broadcasters 
may only have minutes or even seconds to deliver a 
weather forecast and have no time to explain vagaries 
in the forecast. Moreover, determining what forecast 
uncertainty information users actually need and can 
benefit from and how to communicate the informa-
tion (e.g., forecaster confidence, alternate scenarios, 
probabilities) effectively is a challenging task requiring 
the application of social, behavioral, and economic 
science, outreach, and education. Nevertheless, the 
consequence of conveying only single-value informa-
tion is that poorer decisions may be made by users 
because they do not have the benefit of knowing and 

accounting for the forecast uncertainties and risks 
upon which their decisions are based.

After reviewing the societal needs and potential 
benefits of forecast uncertainty information, the 
National Research Council (NRC; NRC 2006) and the 
American Meteorological Society (AMS; AMS 2008) 
conclude that there are compelling reasons for the U.S. 
weather, water, and climate enterprise (referred to here 
as the Enterprise) to consider uncertainty as an integral 
and essential component of all hydrometeorological 
forecasts. These reports recommend that quantifying 
and communicating forecast uncertainty based on the 
probability of possible outcomes should be emphasized 
in addition to the current practice of determining and 
communicating the single most probable forecast.

In response to these and other studies and re-
ports recognizing the scientific, socioeconomic, 
and ethical value of quantifying and effectively 
communicating forecast uncertainty information, 
the AMS Commission on the Weather and Climate 
Enterprise (CWCE) Board on Enterprise Commu-
nication commissioned the Ad Hoc Committee on 
Uncertainty in Forecasts (ACUF) to formulate a 
cross-Enterprise plan to provide forecast uncertainty 
information to the nation. The resulting Weather 
and Climate Enterprise Strategic Implementation 
Plan for Generating and Communicating Forecast 
Uncertainty (Hirschberg and Abrams 2011; referred 
to here as the Plan) is now available on the AMS 
website (at www.ametsoc.org/boardpges/cwce/docs/
BEC/ACUF/2011-02-20-ACUF-Final-Report.pdf) 
and is summarized here.

The Plan defines a vision, strategic goals, roles 
and responsibilities, and an implementation road 
map that will guide the Enterprise toward routinely 
providing the nation with comprehensive, skillful, 
reliable, sharp, and useful information about the 
uncertainty of hydrometeorological forecasts. As an 
overview of the use and benefits of forecast uncer-
tainty information, the Plan offers several scenarios of 
how hydrometeorological forecast uncertainty infor-
mation can improve decisions and outcomes in vari-
ous socioeconomic areas (see sidebar). For example, 
shifting to a warning capability, which incorporates 
probabilistic forecasts and thresholds into the warn-
ing criteria, a “warn on forecast” (WOF; Stensrud 
et al. 2009) or “warn on probability” (WOP) capability 
could increase warning lead times1 (see Fig. 2) and 

Fig. 1. Notional decay of forecast skill (0 is no skill com-
pared to climatology and 1 is perfect skill, i.e., agrees 
perfectly with observations) as a function of lead time 
in seconds. Theoretically, a perfect forecast can be pro-
duced with a perfect model and perfect initial conditions. 
However, the initial state cannot be known perfectly and 
even exceedingly small errors will grow rapidly during 
the forecast, eventually making even a perfect-model 
ensemble forecast no more skillful than a climatologi-
cal forecast. The time scale when zero skill is reached 
generally depends on the scale of the phenomenon. This 
time scale is determined by the phenomenon, not the 
model. For most of these phenomena, the skill of cur-
rent forecasts decreases much more rapidly than these 
curves with a perfect model and may end up below zero 
because of model imperfections.

1	Any new warning capability based on probabilities will 
need to be developed in conjunction with social science 
research to elicit needs for content, format, and channels of 
communication.
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provide emergency managers, other decision mak-
ers, and the public additional valuable information 
by which to save lives and property.

The Plan is intended for a wide audience, including 
senior decision makers, program managers, service 
providers, and physical and social scientists. It is based 

on and is intended to provide a foundation for imple-
menting recent recommendations in NRC (2006), 
AMS (2008), WMO (2008), and others, and it leverages 
emerging results from scientific and socioeconomic 
studies and the best practices of hydrometeorological 
services and industry from around the world.

Fig. 2. Comparison of a tornadic thunderstorm evolution and the issuance of tornado warnings under the 
currently operational warn on detection (WOD) paradigm and a hypothetical warning application under a 
WOF or WOP paradigm. (a) Radar reflectivity of a developing thunderstorm. The radar reflectivity does 
not yet indicate the presence or formation of a tornado. (b) Radar reflectivity of the same thunderstorm 
after it has developed a mature mesocyclone radar signature (hook echo); a warning polygon (red box) 
indicates the geographic area under a tornado warning. Under the WOD paradigm, the warning polygon 
can only be issued when a mesocyclone signature [such as indicated in (b)] is detected by the radar or there 
is an actual observation (e.g., by a trained spotter indicating the formation of a tornado). (c) As in (a), but 
with a conceptual 1-h lead time probabilistic tornado path superimposed. (d) As in (b), but with an updated 
conceptual 1-h probabilistic tornado path instead of a warning polygon. Under a WOF/WOP paradigm, a 
tornado warning using appropriate probabilistic thresholds may be able to be issued when thunderstorms 
are in their incipient stages [as in (a)], providing more lead time. Adapted from Stensrud et al. (2009).
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VISION, STRATEGIC GOALS, AND IMPLE-
MENTATION ROAD MAP. The vision described 
in the Plan is of a future where societal benefits of 
forecast uncertainty information are fully realized, 
a vision in which the use of forecast uncertainty 
information in decision making helps to

•	 protect lives and property;
•	 improve national airspace, marine, and surface 

transportation efficiency;
•	 strengthen national defense and homeland 

security;
•	 improve water resources management;
•	 sustain ecosystem health;
•	 improve energ y product ion,  sa fe t y,  and 

management;
•	 increase business and agricultural productivity 

and competitiveness;
•	 provide a basis for sound, risk-informed planning; 

and
•	 enhance public well-being.

In order to reach this vision, the Plan defines four 
interrelated strategic goals and supporting objectives 
(Table 1) to meet the scientific and cultural challenges 
associated with a greater focus on probabilistic fore-
casts. Summary discussions of these strategic goals 
and objectives are presented later in this section. 
In the full version of the Plan, each objective has 
tabulated background information; the need for the 
objective; current capabilities and gaps; performance 
measures and targets; a proposed solution strategy; 
and specific tasks (with suggested Enterprise part-
ner leads) that must be accomplished to meet the 
objective.

The Enterprise consists of four primary sectors: 
1) the government sector, which includes local, state, 
and federal governments; 2) America’s weather and 
climate industry, which includes consulting/service 
companies and media; 3) academia, which includes 
associated research institutions; and 4) nongov-
ernment organizations (NGOs), which includes 
organizations like the AMS and National Weather 
Association. In order for the Plan to be successful, 
the Enterprise will need to leverage the expertise and 
resources of each sector to mainstream quantitative 
forecast uncertainty information (by using, e.g., prob-
abilistic forecasts) into decision making. Increasingly, 
the missions, strengths, and capabilities among these 
sectors can overlap, making distinct delineations dif-
ficult. Nevertheless, there are leadership roles each 
partner group needs to fill to generate and communi-
cate comprehensive forecast uncertainty information 

that can be used effectively by all decision makers, 
from the public and emergency management to agen-
cies and corporations.

Strategic goal 1. Understand forecast uncertainty. 
Strategic goal 1 is to understand the hydrometeoro-
logical forecast uncertainty needs of society, including 
how humans can most effectively interpret and apply 
uncertainty information in their decision making; 
the natural predictability of the coupled atmosphere, 
oceans, and related Earth systems; and the optimal 
design of ensemble prediction systems. Meeting this 
goal will increase the Enterprise’s understanding and 
knowledge about hydrometeorological forecast uncer-
tainty, so that the Enterprise can communicate this 
information more effectively to users (strategic goal 2) 
and improve operational probabilistic prediction sys-
tems (strategic goal 3). First, understanding in several 
areas (objective 1.1) is needed to determine and provide 
uncertainty information that is most beneficial and 
to effectively communicate and assist users in using 
the information in their decision making under stra-
tegic goal 2. These areas include understanding how 
various types of users currently perceive, synthesize, 
and use uncertainty information to make decisions; 
how uncertainty information combines with other 
factors to influence decision making; what types of 
uncertainty information are needed; how needs for 
uncertainty information vary by hydrometeorologi-
cal event; what formats will most effectively improve 
decision making; and how the needs for content and 
format vary by communication channel. At best, if this 
need is not met, the forecast uncertainty information 
the Enterprise provides will continue to go largely 
unused. At worst, uncertainty information will be 
misinterpreted or misused, leading to poor decisions 
and negative outcomes. A few preliminary studies ex-
ist on effective ways for communicating probabilistic 
information (Kuhlman et al. 2009). However, there is 
limited knowledge specific to the effective communica-
tion of hydrometeorological forecast uncertainty and 
risk to various customer and user groups. Although 
communicating uncertainty and risk has been studied 
in other fields and contexts, it is not apparent how this 
knowledge applies to communicating hydrometeoro-
logical forecast uncertainty.

Second, to improve operational probabilistic pre-
diction systems (which produce the uncertainty infor-
mation), an increased understanding of the nature of 
atmospheric predictability is needed (objective 1.2) to 
set reasonable forecast accuracy and reliability goals 
and to help prioritize the development of forecast 
uncertainty products and services. A more complete 
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understanding of predictability will also provide in-
sights about forecast model errors and help assess and 
improve data assimilation and other techniques to 
quantify forecast uncertainty. Although some rough 
quantification exists (e.g., predictability usually in-
creases with the scale of motion), knowledge about 
the predictability of specific phenomena is lacking. 
For example, is a 3-day tornado outlook at the county 

scale more or less predictable than a 10-day hurricane 
track and intensity forecast? Current understanding 
does not allow quantification of the relative gap be-
tween the ability to forecast a phenomenon and the 
phenomenon’s intrinsic predictability. Quantifying 
how this gap changes for various phenomena may 
help determine which aspects of forecast models are 
in greatest need of improvement.

Table 1. Strategic goals and supporting objectives.

Strategic goal 1
Understand forecast 

uncertainty

Strategic goal 2
Communicate forecast 

uncertainty information 
effectively, and collaborate 
with users to assist them in 
interpreting and applying 
the information in their 

decision making

Strategic goal 3
Generate forecast 
uncertainty data, 

products, services,  
and information

Strategic goal 4
Enable forecast 

uncertainty research, 
development, operations, 
and communications with 
supporting infrastructure

Objective 1.1: Identify 
societal needs and best 
methods for communicating 
forecast uncertainty. 

Objective 2.1: Reach out, 
inform, educate, and learn from 
users.

Objective 3.1: Improve the 
initialization of ensemble 
prediction systems.

Objective 4.1: Acquire 
necessary high-performance 
computing.

Objective 1.2: Understand 
and quantify predictability.

Objective 2.2: Prepare the next 
generation for using uncertainty 
forecasts through enhanced 
K–12 education.

Objective 3.2: Improve 
forecasts from operational 
ensemble prediction 
systems.

Objective 4.2: Establish a 
comprehensive archive.

Objective 1.3: Develop 
the theoretical basis for 
and optimal design of 
uncertainty prediction 
systems.

Objective 2.3: Revise 
undergraduate and graduate 
education to include  
uncertainty training.

Objective 3.3: Develop 
probabilistic nowcasting 
systems.

Objective 4.3: Ensure easy 
data access.

Objective 2.4: Improve the 
presentation of government-
supplied uncertainty forecast 
products and services.

Objective 3.4: Improve 
statistical postprocessing 
techniques.

Objective 4.4: Establish 
forecast uncertainty test 
bed(s).

Objective 2.5: Tailor data, 
products, services, and 
information for private-sector 
customers.

Objective 3.5: 
Develop nonstatistical 
postprocessing techniques.

Objective 4.5: Work 
with users to define their 
infrastructure needs.

Objective 2.6: Develop and 
provide decision-support tools 
and services.

Objective 3.6: Develop 
probabilistic forecast 
preparation and 
management systems.

Objective 3.7: Train 
forecasters.

Objective 3.8: Develop 
probabilistic verification 
systems.

Objective 3.9: Include 
digital probabilistic 
forecasts in the weather 
information database.
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Third, a fuller understanding of the sources of fore-
cast uncertainty as well as efficient numerical methods 
for estimating uncertainty in prediction systems (ob-
jective 1.3) are also needed. The two primary contribu-
tions to uncertainty in a forecast are uncertainty in the 
model initial conditions and forecast model error (i.e., 
model uncertainty). Progress in understanding and 
estimating the former source of uncertainty is relatively 
more mature than the latter. Ensemble Kalman filter-
ing and other optimal estimation techniques are being 
developed to improve initial condition uncertainty 
estimates and ensemble initialization. Ongoing chal-
lenges include improvement of analysis uncertainty 
estimates, especially for nonnormally distributed 
variables such as cloud liquid water. In comparison, 
efforts to better understand and develop techniques to 
quantify model uncertainty are only in their relative 
infancy. Although some model errors can be reduced 
through the regular model development process (i.e., 
improving model dynamics and traditional parameter-
izations, increasing resolution, etc.), there will always 
be errors associated with hydrometeorological pro-
cesses occurring below the resolution (the “grid scale”) 
of the model. For example, the common assumption 
in meteorological models has been that the effects of 
subgrid-scale processes could be “parameterized.” That 
is, given the grid-scale conditions, the average effects of 
subgrid-scale motions could be estimated deterministi-
cally (i.e., every time grid-scale condition X occurs, the 
feedback from subgrid-scale effects is exactly Y). As the 
grid resolution is refined, this deterministic assump-
tion is increasingly invalid; a wider and wider range of 
subgrid-scale effects Y are all plausible given the same 
forcing X (Plant and Craig 2008). If a range of effects Y 
is plausible but a single Y is consistently used, this may 
contribute to a lack of spread in ensemble forecasts. 
The implication for ensemble prediction is the need 
to better understand the random (stochastic) nature 
of parameterized hydrometeorological processes in 
models and to reformulate them to be stochastic.

Strategic goal 2. Communicate and collaborate with users. 
Strategic goal 2 is to communicate forecast uncertainty 
information effectively and collaborate with users to 
assist them in interpreting and applying the informa-
tion in their decision making. Simply generating fore-
cast uncertainty information (strategic goal 3) is not 
enough. Users must see the value of the information, 
collaborate with developers to determine what infor-
mation is needed, and learn to use the information to 
help them make decisions. Objectives supporting stra-
tegic goal 2 apply existing and emerging understanding 
from the research community under strategic goal 1 

to reach out to, educate, and work with users about 
uncertainty information and probability; sensitize 
and educate students (including hydrometeorological 
students) about the underlying physical theory and so-
cial science aspects of uncertainty; improve the general 
presentation of forecast uncertainty information and 
tailor it for users based on social science and user feed-
back; and provide decision-support tools and services 
to help users interpret and apply forecast uncertainty 
information in their decision making.

Generations of hydrometeorological users and the 
general public have grown accustomed to single-value 
deterministic forecasts. Inaccurate weather forecasts 
are disparaged and often satirized. New informa-
tion and products that include forecast uncertainty 
could be viewed as a hedge against poor science and 
forecasts, although some social scientists argue that 
acknowledging uncertainties and unknowns builds 
credibility (Morrow 2009). Perhaps the negative con-
notation associated with the terminology “forecast 
uncertainty” argues that it should be replaced with 
“forecast certainty” to help put the information and 
its use in a more positive light. Nevertheless, outreach, 
education, and public information campaigns are 
needed to inform users and the public that forecast 
uncertainty is an inherent component of hydrome-
teorological prediction, and that comprehending 
and using uncertainty information can improve 
their decision making (objective 2.1). Moreover, 
users will also need ongoing collaboration with the 
hydrometeorological and social science community 
to determine what data and products they want and 
need and the proper format for optimal use.

More exposure to the basic concepts of probability 
and statistics in K–12 (especially with salient weather 
examples) will help children grow into adults who are 
more sensitized about uncertainty and the advantage 
of probabilistic forecasts and more likely to use the 
information in their decision making. Currently, 
the topic of uncertainty and use of probabilities in 
weather information only arises if math students 
happen to be given a probability example that has 
to do with weather. A more structured, systematic, 
and reinforcing approach is needed (objective 2.2) to 
illustrate and embed the concepts of probability and 
statistics in hydrometeorology in our nation’s youth.

Undergraduate and graduate students in hydrome-
teorological science need a better basic understanding 
of chaos theory, the fundamentals of ensemble 
predication, probabilistic forecasting, and the use of 
uncertainty guidance for decision making. They also 
need a broad understanding of the social sciences and 
effective communication techniques (objective 2.3).
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Improving the effectiveness of the day-to-day com-
munication of forecast uncertainty information will 
involve both improving the presentation (e.g., formats) 
of government-supplied uncertainty forecast products 
and services (objective 2.4) and tailoring uncertainty 
information by the commercial sector for specific 
customers (objective 2.5). Many, if not most, users of 
forecast uncertainty information will not encounter it 
in a purely digital form from such sources as a weather 
information database (see objective 3.9) but rather 
through regularly available products. By leveraging 
social science research results and user feedback (see 
objectives 1.1, 2.1, and 4.4), these products will need to 
be formatted to best convey the breadth of uncertainty 
information iconically, graphically, textually, and/or 
numerically (e.g., Joslyn et al. 2009). Although there 
are no established Enterprise standards for graphical 
uncertainty products, there are examples of ways of 
displaying data (Fig. 3). NRC (2006) and WMO (2008) 
also provide some ideas about how probabilistic in-
formation could be conveyed effectively and are good 
starting points for the complex process of designing 
appealing and useful new web pages and web services 
for uncertainty products.

Finally, decision-support tools and services are 
needed (objective 2.6) to link forecast uncertainty 
information and direct user impacts and risk toler-
ance. Single-value deterministic forecasts severely 
limit the utility of weather, water, and climate fore-
cast information because they do not allow users to 
apply probabilities to their own thresholds (i.e., risk 
assessment) when making decisions. In contrast, 
the multiple possible forecast outcomes produced 
by ensembles can support decisions of various levels 
of sophistication depending on a user’s cost/loss 
considerations. Automated 
decision-support systems 
can ingest probabilistic 
forecasts into preset user 
threshold/risk tolerance 
algorithms that generate 
a recommended decision 
based on optimizing the 
cost/benefit. To be suc-
cessful, the Enterprise will 
need to collaborate with 
users to understand their 
decision framework. In the 
end, many decisions are de-
terministic: go or no go, do 
it or do not do it. However, 
in some cases, the timing, 
venue, methodology, etc., 

may be changeable, perhaps depending on various 
hydrometeorological outcomes. All of these decisions 
could be helped if uncertainty information were pre-
sented in a way the decision maker could understand 
and use to her or his best advantage.

Strategic goal 3. Generate forecast uncertainty data, 
products, services, and information. Strategic goal 3 is to 
generate reliable, high-resolution weather, water, and 
climate probabilistic and other forecast uncertainty 
data, products, services, and information that meet 
users’ emerging needs for uncertainty information. 
Currently, the National Weather Service (NWS), and 
other parallel organizations, such as the U.S. Navy and 
Air Force, operationally generate mostly deterministic 
hydrometeorological forecast data and information by 
employing the following forecast process:

•	 Collect observations.
•	 Apply data assimilation techniques to synthesize 

the observations together with prior forecasts to 
produce initial conditions for numerical predic-
tion models.

•	 Run the models to produce numerical prediction 
forecasts.

•	 Postprocess the raw model output statistically and 
otherwise to reduce errors. 

•	 Produce objective and human forecaster–modified 
guidance, forecast, and warning data and 
information.

For the most part, all of this forecast information is 
made available to Enterprise partners. The Enterprise 
partners, including the NWS and similar govern-
ment operational organizations, in turn use this 

Fig. 3. A weather forecast graphic for Trondheim, Norway, indicating numerical 
probabilities for different possible temperature and precipitation occurrences 
as a function of time. (Image from www.yr.no, a website by the Norwegian 
Meteorological Institute and the Norwegian Broadcasting Corp.)
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information as a foundation for generating products, 
services, and other value-added information that they 
communicate to their customers and users.

A key to meeting strategic goal 3 is to enhance and 
establish a similar capability to generate and make 
available routinely to Enterprise partners a “founda-
tional” set of forecast uncertainty data and information 
for a range of variables and forecast leads, which the 
Enterprise partners can use to meet their mission and 
customer needs. For the most part, the routine genera-
tion of this foundational set of forecast uncertainty 
information should remain primarily the responsibil-
ity of the government sector because of the resources 
and infrastructure required to support this activity. 
However, all Enterprise partners will be communi-
cating this information to their users and customers 
either in its raw form or through value-added products, 
services, and information.

It will be necessary to continue to collaborate with 
users, social scientists, and partners by using ongoing 

strategic goals 1 and 2 outcomes to define what this 
foundational forecast uncertainty dataset should be 
and how it will evolve. This dataset likely will include 
observation and analysis uncertainty information, 
raw and postprocessed ensemble model output, and 
human value–added information for forecast leads out 
to several weeks (see Table 2 for examples). Uncertainty 
information will be stored in ways both compact and 
informative; this may include the data to estimate the 
full probability density functions (PDFs).

Generating and making available this founda-
tional set of forecast uncertainty data and informa-
tion will require changes in the forecast process. The 
needed changes are reflected in the objectives listed 
under strategic goal 3 in Table 1. These objectives 
will leverage the new understanding about forecast 
uncertainty gained under strategic goal 1, and user 
and customer feedback that is part of strategic goal 
2. Enhancements to information technology (IT) 
and other infrastructure improvements will also be 

Table 2. A sample of the types of forecast uncertainty information that should be generated operationally 
and made freely available as part of a foundational set.

1) Continuous variables

• Temperature and dew point

° Hourly, daytime maximum, and nighttime minimum temperatures mean and range of uncertainty (e.g., 
10th/50th/90th percentile of forecast distribution)

° Extreme temperature probability of exceedance

° User-specific probability of exceedance (e.g., subfreezing thresholds for crop growers, materials applications thresh-
olds for concrete pourers)

• Wind speed

° Exceedance values for predefined thresholds (e.g., gale, hurricane force)

° User-specific probability of exceedance (e.g., wind-energy industry)

• River level and flow

° Exceedance values for predefined thresholds (e.g., minor, moderate, major flood stage)

° Volume of water into reservoirs for optimal water management

2) Quasi-continuous variables

• Wind direction and wind gust PDFs (critical for aviation, wind energy industry, and temperature forecasts)

• Sky cover and cloud optical depth PDFs (critical for solar energy industry and aviation/transportation sector)

• Ceiling height PDFs (critical for aviation)

• Visibility PDFs (critical for aviation)

• Precipitation [probabilistic quantitative precipitation forecast (PQPF), timing, and precipitation type]

° PQPF probability of exceedance values such as 0.1”, 0.25”, 0.5”, 1”, 2”, etc., including flooding exceedance values

° Probability of precipitation shortfalls (e.g., drought and water availability)

° Precipitation timing (onset/cessation), including timing of any changeover in precipitation type (e.g., 60% chance of snow 
will arrive in Boulder between 4 and 6 pm, 20% chance between 2 and 4 pm, and 20% chance between 6 and 8 pm)

3) Discrete weather elements

• Severe weather
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necessary to achieve these objectives; such supporting 
improvements are covered under strategic goal 4.

Objectives 3.1–3.9 focus on improving the steps by 
which forecasts are produced and uncertainty data 
and information are generated and made available to 
Enterprise partners. Note that, although the observa-
tions that are used to initialize the forecast process are 
also uncertain, no observation uncertainty objective 
is included here because it is judged that observation 
uncertainty is already handled adequately by instru-
ment designers and data assimilation scientists.

New and improved data assimilation techniques are 
needed (objective 3.1) that can produce an ensemble of 
initial conditions that is accurate, can sample the range 
of possible true analyses, and can project upon growing 
forecast structures so that differences between member 
forecasts grow (appropriately) quickly. Existing tech-
niques are typically designed to produce sets of initial 
conditions that primarily grow quickly but, in doing 
so, do not necessarily reflect flow-dependent analysis 

uncertainty accurately. As forecast spatial and tempo-
ral resolution increases, these techniques must be able 
to estimate uncertainty at the mesoscale as well as the 
synoptic and planetary scales.

Improved ensemble prediction methods (objec-
tive 3.2) are needed that can propagate the initial 
conditions forward in time and provide reasonably 
sharp and reliable probabilistic forecasts, correctly 
accounting for the uncertainty due to model error. 
Current-generation ensemble prediction systems 
produce uncertainty forecasts that are biased and 
underestimate the forecast uncertainty (i.e., underdis-
persion of the ensemble members collectively). This 
is partly because of the low resolution of the forecast 
models, partly because of improper initial conditions, 
and partly because the ensemble prediction systems 
do not include effective treatments for the error in-
troduced by model deficiencies.

Often, the accuracy of the first few forecast hours 
of numerical weather prediction (NWP) model 

Table 2. Continued. 

° Probability of tornado occurrence within 25 mi (40 km) of a point

° Probability of extreme tornado

° Probability of any severe weather (tornado, winds, and hail)

• Tropical cyclones

° Probabilistic intensity values (e.g., 50% chance of category 1 at landfall)

° Probabilistic storm surge values with inundation mapping of each probability

° Probabilistic storm track (e.g., probabilistic information within “cone of uncertainty”)

• Flooding

° Probability of exceeding streamflow heights (e.g., location-specific levee heights, inundation mapping)

° Probability of time until exceeding river heights and duration above threshold

4) Earth- and near-terrestrial-system elements

• Avalanche probability for a given area

• Mudslides/debris flows probability for a given area

• Tsunamis

• Space weather (e.g., solar storms)

5) Multivariable probabilities

• Heat index (e.g., combining temperature and dewpoint)

• Wind chill (e.g., combining temperature and wind speed)

• Fire weather [e.g., combining temperature, dewpoint, wind speeds, and probability of preceipitation (POP)]

6) Multiple weather and water climate scenarios

• Aviation applications (individual gridded scenarios from an ensemble input into flight-routing software)

• Hydrologic forecast chains on weather and climate time scales (individual time series of possible rainfall/temperature and 
other hydrologic forcing scenarios fed into ensemble of hydrologic forecast models to produce ensemble of streamflow 
estimates)

• Probabilistic drought outlooks
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guidance, including ensemble guidance, is poor be-
cause the NWP models need several model hours to 
“spin up” (i.e., develop internally consistent vertical 
motions) (Roberts and Lean 2008). Because of this, 
new probabilistic nowcasting techniques (objective 
3.3) are needed to generate reliable probabilistic 
forecast information for forecast leads of zero to 
several hours. Most current nowcasting techniques 
are deterministically based and have their roots in 
extrapolation techniques used on existing features, 
which may not properly account for stochastic as-
pects, especially new feature development or dissipa-
tion of existing features.

The need for statistical postprocessing (objective 
3.4) of raw ensemble model output to ameliorate bias 
and other deficiencies will likely never be completely 
eliminated despite improvements in ensemble predic-
tion methods (objectives 3.1 and 3.2). Additionally, 
statistical postprocessing can “downscale” (Cui et al. 
2009) relatively coarse-resolution model output to 
finer detail and also be used to derive quantities not 
directly predicted by the model that may be required 
by users (Hamill et al. 2006). Most current statisti-
cal postprocessing techniques (e.g., model output 
statistics; Glahn and Lowry 1972) are based on de-
terministic model output. A variety of new ensemble 
model–based calibration techniques (e.g., ensemble 
kernel density model output statistics; Glahn et al. 
2009) appear to perform relatively well for normally 
occurring weather and relatively short forecast leads. 
However, for rare events and long-lead forecasts, 
longer training datasets of “reforecasts” and new 
statistical techniques may be needed (Hamill et al. 
2006); for example, in order to correct biases in the 
position of a hurricane in the Gulf of Mexico, ob-
served and forecast tracks from many similar storms 
in the Gulf of Mexico will be needed. With limited 
computational resources, the requirement to generate 
these computationally expensive reforecast training 
datasets with a stable modeling system often conflicts 
with the desire to rapidly implement improvements 
in operational ensemble forecast systems.

Nonstatistical postprocessing techniques (objec-
tive 3.5) are also needed to produce reliable and skill-
ful forecast uncertainty information about forecast 
variables of interest that are not directly predicted 
by numerical models or derived from statistical rela-
tionships (using statistical postprocessing techniques 
discussed under objective 3.4). Considering aviation as 
an example, a variety of groups [e.g., National Center 
for Atmospheric Research (NCAR) Research Applica-
tions Laboratory, Massachusetts Institute of Technol-
ogy Lincoln Laboratory] have developed algorithms 

for estimating aviation-related parameters, such as 
icing, turbulence, and ceiling, from weather model 
output (NCAR 2011). Many of these algorithms have 
been implemented for deterministic forecasts in the 
NWS at the Aviation Weather Center in Kansas City, 
Missouri. However, little has been done to develop, 
test, and verify algorithms that produce skillful and 
reliable probabilistic forecasts of these variables that 
are not normally observed.

The specific role of human forecasters in the 
day-to-day generation of probabilistic forecasts will 
depend on their ability to add value to raw and/or 
postprocessed ensemble model output. In general, 
the role of human forecasters likely will expand from 
the current routine preparation of single-value (de-
terministic) forecasts to monitoring, quality control-
ling, and interpreting probabilistic forecast guidance; 
identifying and assigning confidence to alternate 
forecast scenarios; and when appropriate (e.g., during 
high-impact events) manually modifying automated 
model guidance (Stuart et al. 2006, 2007; Novak et al. 
2008; Sills 2009). Although most current forecast 
preparation systems and tools aiding human forecast-
ers are focused on generating single-value forecasts, 
these new functions will require probabilistic forecast 
preparation systems (objective 3.6) and tools that 
allow humans to interpret and manipulate entire 
ensemble distributions.

Regardless of the specific role that human forecast-
ers eventually assume in the operational generation 
of forecast uncertainty information, they will need 
training (objective 3.7). Although some basic training 
on the theoretical basis for ensemble prediction sys-
tems has been developed, more is needed to provide 
knowledge of the general underlying theory behind 
and the performance of ensemble prediction and 
other probabilistic systems, the weaknesses in current 
operational systems, and what can and cannot be cor-
rected with statistical postprocessing. Forecasters will 
also need to be trained in the new uncertainty forecast 
preparation tools they will use in addition to how 
to collaborate with and assist users in interpreting 
and using uncertainty information in their decision 
processes (strategic goal 2).

The Enterprise also needs a comprehensive, agreed-
upon set of standards and software algorithms for 
uncertainty verification (objective 3.8). Currently, 
forecast verification methods focus on verifying the 
best single-value forecast estimate. Probabilistic fore-
cast verification techniques must be developed and/or 
applied that will assess the characteristics of uncer-
tainty forecasts and provide quantitative feedback to 
ensemble developers, forecasters, service providers, 
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and end users to aid in interpretation and decision 
making. Statistics generated from these techniques 
are needed to serve as a reference for user expecta-
tions, guide future improvements, and assess the value 
added during each step of the forecast process.

The final objective under strategic goal 3 (objec-
tive 3.9) is to make all of this forecast uncertainty 
information available to Enterprise partners, who 
can then communicate it to their users and custom-
ers either in its raw form or through value-added 
products, services, and information. Currently, 
hydrometeorological observations and forecast prod-
ucts and information flow, in various formats and 
via numerous push–pull technologies, from their 
originating sources to partners, customers, and 
other users inside and outside of the Enterprise. This 
direct-from-source-to-user information flow will not 
necessarily diminish in the future. However, more 
powerful computational and telecommunications 
technologies now are enabling “one stop” reposito-
ries of archived and real-time data and information. 
The NWS, for example, is already providing gridded 
mosaics of sensible surface weather elements in its 
National Digital Forecast Database (NDFD) (Glahn 
and Ruth 2003). This concept is expected to expand 
to include more parameters and four dimensions 
(three space dimensions and one time dimension). 
Moreover, the FAA, National Oceanic and Atmo-
spheric Administration (NOAA), and other federal 
agency partners are envisioning using this weather 
information storage approach to support NextGen. 
This “four-dimensional weather information data-
base” will contain real-time observation and forecast 
data. Initial NextGen requirements already state that 
all forecast products must have probabilistic attri-
butes. The ultimate vision is for a four-dimensional 
environmental information database that includes 
comprehensive hydrometeorological as well as other 

Earth system observations, predictions, and related 
information for users to access. Comprehensive fore-
cast uncertainty data and information will need to be 
included in the planning, deployment, and access of 
these database systems as they evolve.

Strategic goal 4. Enable forecast uncertainty research, de-
velopment, and operations with supporting infrastructure. 
The purpose of strategic goal 4 is to provide the infra-
structure that will be necessary to carry out the objec-
tives under the other three strategic goals. Specifically, 
many of the objectives under strategic goals 1 and 2, 
such as predictability studies (objective 1.2), ensemble 
design (objective 1.3), operational ensemble initial-
ization and prediction (objectives 3.1 and 3.2), and 
statistical postprocessing (objective 3.4), will require 
increases in high-performance computing (objective 
4.1). Despite advances that may be possible by sharing 
multimodel ensemble forecast data among U.S. and 
international centers, the production of skillful and 
reliable probability products cannot be achieved fully 
without a large increase in computational resources 
dedicated to the production of improved uncertainty 
forecasts. Currently, the U.S. Enterprise does not focus 
as much high-performance computing on ensemble 
prediction systems as some other international hydro-
meteorological organizations. For example, the Euro-
pean Centre for Medium-Range Weather Forecasts 
(ECMWF) currently runs a larger global ensemble (51 
members) compared to the NWS’s National Centers for 
Environmental Predication (NCEP) global ensemble 
(21 members), at approximately 3 times higher resolu-
tion,2 and includes the regular production of real-time 
reforecasts that can be used for calibration. Although 
NCEP runs its ensemble system 4 times daily to EC-
MWF’s twice daily, it may take currently as much as 
40 times3 more computational resources for NCEP to 
fully match the ECMWF system.

2	Currently, the ECMWF global ensemble runs at T639 resolution for the first 10 days of its forecast and T319 thereafter. The 
NCEP global ensemble runs at T190 for its full 16-day forecast.

3	The 40 times multiple is estimated based on the following: ECMWF’s ensemble resolution is currently T639L62 and NCEP’s 
ensemble resolution is T190L28—that is 3.36 times greater resolution for ECMWF in the horizontal and 2.14 times greater 
in the vertical. Neglecting differences in advection approach (discussed below), this means that ECMWF’s ensemble is 
based on 3.363 × 2.14 ≅ 81 times more calculations, including the proportionally reduced time step for ECMWF. ECMWF 
also generates 100 real-time members per day, whereas NCEP generates 84 real-time members per day. However, ECMWF 
also generates 90 reforecast members (5 members × 18 yr) each week, or an extra ~13 per day. So, ECMWF produces a fac-
tor of (100 + 13)/ 84 = 1.34 times more members. The total extra computational burden is thus 81 × 1.34 ≅ 109 times more. 
Assuming roughly that ECMWF’s semi-Lagrangian scheme allows a time step 3 times longer, this then indicates a ~36 times 
greater computational burden. There are many other factors neglected here: the sophistication and computational expense 
of different parameterization methods, the different computational expense of the Legendre transforms to grids, different 
data assimilation approaches, and so on. Nevertheless, we think 40 times greater is a reasonable rough estimate of the overall 
computational difference.
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A readily accessible public archive of past opera-
tional ensemble forecasts and verification statistics 
is also needed (objective 4.2) to facilitate research 
(objectives 1.2 and 1.3), the calibration (statistical 
adjustment) of ensemble forecasts (objective 3.4), the 
ensemble technique development process, product 
development, and forecaster training. Currently, 
the NOAA Operational Model Archive and Distri-
bution System (NOMADS; Rutledge et al. 2006) is 
an emerging Enterprise-wide resource for storing 
numerical forecast guidance. NOAA has a coop-
erative agreement with the Meteorological Service 
of Canada to share ensemble forecast information 
in NOMADS and is developing similar agreements 
to share forecasts with the U.S. Navy and Air Force. 
The Observing System Research and Predictability 
Experiment (THORPEX) Interactive Grand Global 
Ensemble (TIGGE; Bougeault et al. 2010) archives a 
base set of global medium-range ensemble forecast 
and analysis information from nine different fore-
cast centers worldwide. However, more data storage 
is required.

Data access systems are needed (objective 4.3) 
that are capable of transferring very large amounts 
of data from forecast uncertainty providers to clients 
and/or that allow these data to be parsed into subsets, 
transformed, and reformatted prior to transfer to the 
client. A number of current projects are exploring 
facets of ensemble data access, including NOMADS, 
Unidata, and the Global Interactive Forecasting 
System.

A test bed is needed (objective 4.4) where develop-
ers, forecasters, and users can interact with and test 
forecast uncertainty products, services, and infor-
mation prior to implementation. Although there is a 
nascent ensemble test bed within the Developmental 
Testbed Center (Toth et al. 2011), which focuses on 
testing and evaluating ensemble-related techniques, 
there is currently no facility that permits users (e.g., 
operational NWS and industry forecasters, emergency 
managers, other officials responsible for public safety, 
utility companies and other sectors, general public) 
to conveniently evaluate and critique experimental 
uncertainty products. Such a test bed would avoid the 
challenges of testing in a live production environment 
and provide a forum for feedback among providers 
and users before operational implementation.

Finally, users will need assistance (objective 4.5) 
defining the infrastructure they will need to use 
new forecast uncertainty information. Universities, 
industry, and consumers all have made significant 
and continuing investments in infrastructure. 
Technological advances keep increasing capabilities 

without increasing the cost. However, current user 
software systems are mostly oriented toward single 
deterministic forecasts. Software systems and deci-
sion aids that deal with a single-value forecast and no 
probabilistic information will need to be upgraded 
and optimized in a manner that most easily allows 
later improvement.

NEXT STEPS. Likely, the most important next step 
for this Plan is to identify a lead to implement it. The 
ACUF believes strong leadership in organizing and 
motivating Enterprise resources and expertise will be 
necessary to reach the Plan’s vision and goals and shift 
the nation successfully to a greater understanding and 
use of forecast uncertainty information. To this end, 
the committee endorses the recommendation in NRC 
(2006) for NOAA and, in particular, the NWS as the 
nation’s public weather service to take on this leader-
ship role. Furthermore, the ACUF recommends that 
the AMS Commission Steering Committee (CSC) 
as part of the CWCE monitor progress and provide 
executive oversight for this Plan because the CSC 
is a body of senior representatives from the entire 
Enterprise.

Another important next step is to develop an over-
arching strategy of how the Enterprise will resource 
and implement the proposed tasks. Examples of such 
a strategy would be 1) to attempt to establish a single 
large program, 2) to use the Plan to guide various 
independent but nevertheless connected projects, or 
3) some combination of 1 and 2.

Activities under the second option are occurring 
already and have informed and are leveraging this 
Plan. For example, the National Unified Operational 
Prediction Capability (NUOPC) program (see www 
.weather.gov/nuopc/) is using the Plan to help build 
a national research and development (R&D) agenda 
that will be used to improve a tri-agency (NOAA, 
Navy, and Air Force) unified ensemble system. 
Another example is the national workshop on me-
soscale probabilistic prediction, which was held in 
September 2009 and sponsored by NCAR and the 
NWS. The recommendations from this workshop 
support and extend modeling and enabling infra-
structure objectives and tasks under strategic goals 
3 and 4 in this Plan. Moreover, the workshop recom-
mended the formation of working groups, lead by a 
national advisory committee, to perform the needed 
R&D effort and to use the Plan to help guide their 
activities.

Finally, although the implementation road map 
suggests sector roles and responsibilities and sector 
leadership for the various tasks in the Plan, the Plan 
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itself is not programmatic in the sense of defining 
specific program/project plans with accompanying 
cost, schedule, and performance information. 
Defining these important programmatic details 
is also among the next steps in implementing the 
Plan and should be the purview and responsibil-
ity of Enterprise decision makers throughout the 
partnership.
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