

SIMULARE **CONVIENE!**I modelli ambientali strumento di previsione e pianificazione

L'utilizzo della modellistica idrologica ed idrodinamica da parte del sistema delle Agenzie Ambientali RISULTATI DELL'ATTIVITÀ DI RICOGNIZIONE

Secondo BARBERO Arpa Piemonte – Idrologia ed effetti al suolo

COMITATO TECNICO PERMANENTE ISPRA/ARPA

GRUPPO DI LAVORO

Modellistica idrologica e idrodinamica, Area/ attività C elaborazione, gestione e diffusione delle informazioni ambientali

Coordinatore

Secondo Barbero – Arpa Piemonte

Componenti

Silvano Pecora – Arpa Emilia Romagna Isabella Scroccaro – Arpa Friuli Venezia Giulia Adolfo Mottola – Arpa Campania Silvia Cremonese – Arpa Veneto Carlo Glisci – Arpa Basilicata Marco Canepa – Arpa Liguria Barbara Lastoria – ISPRA Gabriele Nardone - ISPRA

OBIETTIVI

Ricognizione dello stato dell'arte della modellistica idrologica e idrodinamica (strumenti, metodi, organizzazione e referenti) nel sistema agenziale

PRODOTTI

ISPRA - A RPA

AREA C ELABORAZIONE - GESTIONE - DIFFUSIONE DELLI INFORMAZIONI AMBIENTALI

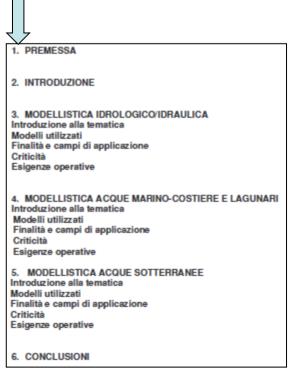
LINEA DI ATTIVITA

MODELLISTICA IDROLOGICA E IDRODINAMICA

ATTIVITA' 2010-2012

Relazione tecnica sulla ricognizione dello stato dell'arte della modellistica

Dicembre 201


RACCOLTA DATI

Il gruppo di lavoro ha formulato un questionario per censire lo stato dell'arte:

- Parte 1 quadro normativo nazionale e regionale nell'ambito del quale sono definite le competenze del soggetto istituzionale interpellato,
- Parte 2 finalità/campi di applicazione delle varie tipologie di modellistica
- Parte 3 modellistica idrologico-idraulica (afflussi/deflussi e idrodinamica fluviale)
- Parte 4 modellistica per le acque marino-costiere
- Parte 5 modellistica lagunari e acque sotterranee

Analisi dei risultati emersi con particolare riferimento a

- modelli utilizzati
- campi di applicazione
- criticità e prospettive

MODELLISTICA IDROLOGICA IDRAULICA

Molteplici campi di applicazione operativa:

- -Tempo reale
 - supporto alla previsione delle piene (sistema di allerta nazionale centri funzionali)
 - supporto alla gestione delle risorse idriche per eventi di magra (cabine di regia siccità - regioni AdB)

-Tempo differito

- bilancio idrico (pianificazione di distretto idrografico)
- analisi dello stato di qualità (Indice di alterazione regime idrologico WFD2000/60)
- mappatura aree inondabili (Direttiva alluvioni 2007/60)
- trasporto solido
- rianalisi post evento
- scenari di evoluzione della risorsa idrica di lungo periodo (cambiamenti climatici)

USO DEI MODELLI

Modelli idrologici

		Piene						
	Previsione		Analisi					
	Ad evento	In continuo	post Evento	Bilancio idrico	Qualità acque	Trasporto solido	Supporto Modellazione Sotterranea	Altri Usi
Basilicata	X		X					
Campania			X				X	
Emilia R.	X	X	X	X	X		X	X
Friuli VG								
Liguria	X	X	X	X				
Marche								
Molise				X	X			
Piemonte	X	X	X	X				X
Puglia								
Toscana							X	
Umbria								
Val d'A.								
Veneto			X	Χ	X			

Modelli idraulici

		Pi				
	Prev	isione	Analisi post	Aree		
	Ad evento In continuo		evento	inondabili	Trasporto solido	Qualità acque
Basilicata		X	X	X		X
Campania						
Emilia R.		X	X	X		X
Friuli VG						
Liguria						
Marche						
Molise					X	X
Piemonte	X	X	X	X		
Puglia						
Toscana						
Umbria						
Val d'A.						
Veneto *			X		X	X



PREVISIONE PIENE

Modellistica di previsione delle piene utilizzata in Piemonte nella gestione dell'alluvione del 2000

Sala Situazione Rischi Naturali notte tra Sabato e Domenica 15-10-2000

Previsione di Sabato 14-10-2000 ore 14 per successive 48 ore

(linea nera osservazione, linea rossa previsione)

VALUTAZIONE ALTERAZIONE REGIME IDROLOGICO (IARI)

Portate

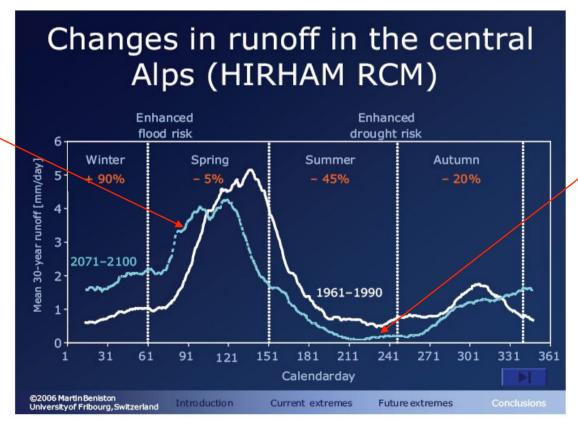
pre-impatto

Simulate dal modello di previsione del Centro Funzionale

Portate post-impatto

Misurate (2010)

NNO	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	отт	NOV	DIC
www.		Chemica		ERIODOS				JADATA)	1-0-2	5 27 27 27	10000	0.2772/2/0
2000	3.11	1.90	3.04	13.72	22.84	34.28	9.39	4.76	4.64	21.99	14.93	8.67
001	5.03	4.33	11.79	9.37	30.15	30.89	20.73	4.53	4.49	8.49	5.27	3.15
002	1.83	6.35	8.30	7.99	22.14	23.48	22.51	10.82	12.69	13.94	16.95	8.18
003	5.24	1.66	3.71	9.56	30.58	18.60	2.95	2.05	3.31	5.31	9.27	7.68
:004	4.09	5.37	5.10	5.79	15.99	32.37	13.44	4.94	4.46	4.19	10.42	5.05
005	4.23	1.35	3.91	10.67	17.01	11.34	3.62	2.17	10.65	16.05	8.27	3.60
:006	1.43	3.89	4.01	11.92	11.87	7.94	5.40	4.42	10.94	10.58	4.25	4.75
007	5.05	3.36	3.31	12.19	12.01	16.45	1.73	1.78	1.96	4.70	6.33	4.61
8008	4.81	4.48	6.09	6.68	24.84	30.47	10.67	2.60	5.34	2.02	9.66	5.84
009	3.78	2.88	7.43	20.04	36.94	42.84	15.58	5.08	10.47	72702		
					ANNO D	A ANALIZZ	ARE			5.25		
010	3.74	3.43	5.82	9.51	8.72	7.70	4.49	3.81	3.30	3.62	9.50	4.73
Media	2.06	2.56	5.67	10.00	22.44	24.07	10.61	4.21	6.90	9.70	9.49	6.73
ercentile 25	3.28	2.14	3.76	8.34	16.25	16.98	4.05	2.28	4.47	4.70	5.33	4.61
orcontile 75	4.00	4.44	7.10	12.13	20.02	22.00	15.12	4.90	10.60	13.94	10.42	7.60
Onat75-Onat25	1.70	2.30	3.34	3.79	12.57	15.02	11.06	2.52	6.13	9.25	4.09	3.07
list Q25	0.27	0.56	0.62	0.01	0.60	0.62	0.04	0.50	0.19	0.12	0.00	0.04
list 075	0.73	0.44	0.38	0.69	1.60	1.62	0.96	0.42	1.19	1.12	0.20	0.96
nin(distQnat25,Qnat75)		0.44	0.38	0.31	0.60	0.62	0.04	0.42	0.19	0.12	0.20	0.04
i,k	0.00	0.00	0.00	0.00	0.60	0.62	0.00	0.00	0.19	0.12	0.00	0.00
tot	0.127											
SPI	0	da bolk	ettivo meter	dicembre	2010- SPI	a 12 mesi						
A 701	1	_										
STATO	0.127 BUOND							_				
		AN	DONNO GES	30				SPI > 2		Grado	0.5	\Box
96.00									CONTRACTOR OF THE PARTY OF THE	warmente uvrokl	0.5	
			-		OMEDIA nat					a demonstrate a complete	0.75	
50.00			-	_	OMECIA nat Q0.35 nat			1 < 901 :	2 moder	nacrosie arric	0.75	-
		1	1					1 < 501 : -1 < 501 :	S 1	nermale	1	-
25.00		1	1		Q 0.25 nat			1 < 501 : -1 < 501 : -2 < 501 :	S 1 6-1 sicolté s	normale voderata/som	1 0.75	
25.00		1	-11		Q 0.25 nat Q 0.75 nat			1 < 501 : -1 < 501 :	S 1 6-1 sicolté s	nermale	1	
25.00		1	7.1		Q 0.25 nat Q 0.75 nat			1 < 5% : -1 < 5% : -2 < 5% : -5% :	£ 2 £ 1 £ -1 sicolté s 2	mrnale voderata/som cité extreme	0.75 0.5	
25.00 25.00 20.00 0 15.00	1.	1	-11		Q 0.25 nat Q 0.75 nat			1 < 501 : -1 < 501 : -2 < 501 : -501 :	i 2 moder i -1 sicolti e 2 sic	normale noderata/som cité extreme	0.75 0.5	
30.00	1	1	-11		Q 0.25 nat Q 0.75 nat			1 < 501 : -1 < 501 : -2 < 501 : -501 :	(2 moder (-1 sicolti s (-1 sicolti s (-1 sicolti s (-1 sicolti s (-1 sicolti s	normale voderate/som cité exircine STATO ELEVATO	0.75 0.5	
25.00 25.00 20.00 0 15.00	J.	1	-11		Q 0.25 nat Q 0.75 nat		<u> </u>	1 < 501 : -1 < 501 : -2 < 501 : -501 : -	(2 mode (1 final) (-1 picols) (2 picols) (2 picols) (3 picols) (4 picols) (5 picols) (6 picols) (7 picols) (8 picols) (8 picols) (9 picols) (1 picols) (1 picol	STATO	0.75 0.5	
25.00 25.00 20.00 0 15.00 10.00	ji.	1	-11		Q 0.25 nat Q 0.75 nat	<u> </u>	<u> </u>	1 < 501 : -1 < 501 : -2 < 501 : -501 : -	(2 moder (-1 sicolti s (-1 sicolti s (-1 sicolti s (-1 sicolti s (-1 sicolti s	normale voderate/som cité exircine STATO ELEVATO	0.75 0.5	
25.00 25.00 25.00 15.00 10.00	AE APE	Li	-11		Q0.35 nat Q0.75 nat Q2010	TT NON	DC	1 < 501 : -1 < 501 : -2 < 501 : -501 : -	(2 mode (1 final) (-1 picols) (2 picols) (2 picols) (3 picols) (4 picols) (5 picols) (6 picols) (7 picols) (8 picols) (8 picols) (9 picols) (1 picols) (1 picol	STATO	0.75 0.5	



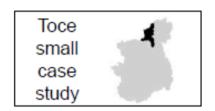
SCENARI CLIMATICI

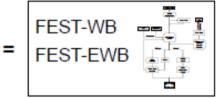
Variazioni nel regime stagionale dei fiumi possono aumentare i periodi di esposizione al rischio di alluvioni e di siccità inoltre le alterazioni nel run-off riducono l'alimentazione delle falde sotterranee, a causa della maggiore saturazione del suolo

Anticipo piene primaverili

Aumento magre estive

Elaborazione tratta da rapporto IPPC

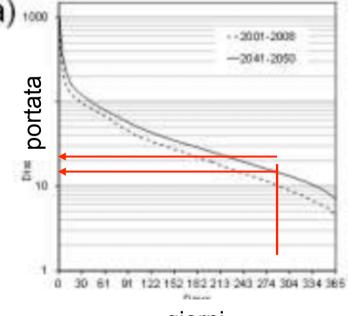




IMPATTO DEL CAMPIAMENTO CLIMATICO SUL REGIME IDROLOGICO NEI BACINI ALPINI

Caso studio: il bacino del fiume Toce

Accoppiamento modelli idrologici con scenari climatici di lungo periodo



At site bias corrected climate scenario forcings: REMO and RegCM3

www.acqwa.ch

giorni
Portata media nel periodo 2041-2050
confrontate con il periodo 2001-2008

MODELLISTICA ACQUE MARINO COSTIERE E LAGUNARI

Moduli:

- -idrodinamica del moto ondoso (2D 3D)
- -dispersione inquinanti
- -trasporto solido e morfodinamica costiera

Applicazioni:

- -supporto al controllo mantenimento e previsione delle caratteristiche dell' area costiera (Direttiva Balneazione Gestione Integrata zona costiera WFD)
- valutazione dispersione inquinanti
- qualità delle acque di balneazione (Dlgs 116/2008)
- valutazione del trasporto solido (evoluzione coste)

USO DEI MODELLI

I modelli delle acque marino costiere e lagunari vengono utilizzati da tutte le Arpa per effettuare simulazioni idrodinamiche e di moto ondoso. Le simulazioni idrodinamiche e di moto ondoso sono generalmente la base per le simulazioni a supporto delle valutazioni di qualità delle acque in particolare per la qualità delle acque di balneazione e del trasporto solido.

Agenzie che	Analis	si per	Campi di applicazione						
hanno risposto	situazioni specifiche	scenari	Idrodinamica	Moto ondoso	Qualità acque	Trasporto solido	Altri Usi		
Basilicata									
Campania									
Emilia R.	X		X	X	X		X		
Friuli VG	X	X	X	X	X	X			
Liguria	X	X	X	X	X	X			
Marche									
Molise									
Piemonte									
Puglia									
Toscana									
Umbria									
Val d'A.									
Veneto	X	X	X	X	X	X			

MODELLISTICA ACQUE SOTTERRANEE

La modellistica delle acque sotterranee rappresenta una settore specialistico dell'idrogeologia ambientale in cui si implementano e si sviluppano modelli numerici al fine di riprodurre e/o di simulare il flusso e il trasporto di inquinanti negli acquiferi e/o nella zona insatura del sottosuolo.

- protezione delle acque sotterranee dall'inquinamento e dal deterioramento (D.Lgs. 30/2009 in attuazione della Direttiva 2006/118/CE.)

A seconda degli obiettivi i modelli possono essere inquadrati in due grosse categorie. **Modelli Diagnostici** finalizzati a valutare ipotesi sulle cause e sulle condizioni che hanno generato eventi inquinanti.

Modelli Previsionali in grado di consentire ipotesi su scenari futuri di inquinamento, variazione di livelli di falda, variazioni di portate sorgive, etc.).

USO DEI MODELLI

La modellistica delle acque sotterranee si applica a domini idrogeologici circoscrivibili fisicamente e/o idraulicamente in un contesto concettuale ragionevolmente semplificato rispetto alla complessità idrogeologica reale.

Le scale di lavoro possono essere molto diverse:

- bacino idrogeologico
- corpo idrico sotterraneo
 - sistema fiume falda
 - campo pozzi, discarica ecc.

ARPA	MODELLI (codici di calcolo)	CAMPI DI APPLICAZIONE
Campania	MODFLOW, MODPATH, MODFLOW-SURFACT, MODHMS, MT3DMS, SPLIT, SUTRA, PEST, SWAT	Sperimentazione sui sistemi acquiferi delle piane alluvionali del F. Sarno e F. Sele Sperimentazione sul sistema acquifero di Piana del F. Iscero
Emilia Romagna	MODFLOW, MODPATH, MT3DMS, FLOWKONSOL, CHEMFLOW-2000, CRITERIA	Applicazione ai sistemi acquiferi della Conoide di Marecchia, della Conoide Reno, e all'intero sistema acquifero emiliano-romagnolo
Friuli Venezia Giulia	MODFLOW, MODPATH, MT3DMS, PEST	
Liguria	MODFLOW, SEAWAT, MT3DMS, MODPATH, PEST	Sistemi acquiferi costieri
Molise	RW/FW	
Toscana	MODFLOW, MODPATH, SWAT	Applicazione al bacino idrogeologico di Lucca, all'acquifero costiero a sud della regione, al bacino del F. Cecina, ad un settore dell'acquifero alluvionale di Valdarno
Veneto	MODFLOW, MODPATH, MT3DMS,	Applicazione a parti di sistema acquifero della Provincia di Padova

CONCLUSIONI

- I modelli **idrologici/idraulici** sono utilizzati da 8 Agenzie ed i campi di applicazione sono molteplici. Non si segnalano criticità per l'utilizzo ma si evidenza che <u>le applicazioni in R.T. richiedono un "servizio" organizzato (turni), soluzioni tecnologiche in alta affidabilità e programmi di mantenimento ed evoluzione permanente.</u>
- La modellistica di acque marino-costiere è utilizzato solamente da 4 agenzie a fronte di circa 15 regioni costiere. Vengono utilizzati generalmente a supporto delle valutazioni di qualità delle acque. Grado di criticità elevato per la complessità dell'implementazione dei modelli.
- La modellistica delle **acque sotterranee** rappresenta una settore specialistico dell'idrogeologia che, nel sistema agenziale è utilizzato da 7 Arpa. I modelli vengono utilizzati per effettuare simulazione dei campi di flusso degli acquiferi (riproduzione dei livelli piezometrici/configurazione della superficie di falda) e per analisi di supporto alla stima del bilancio idrogeologico. Viene espresso un grado di criticità elevato in relazione alla disponibilità di dati necessari per la costruzione dei modelli di rappresentazione del dominio di interesse.

..... E PROSPETTIVE

- Redazione linee guida
- Formazione specialistica
- Rafforzare la rete di collaborazione dell' idrologia operativa italiana