

Dipartimento di Ingegneria Civile, Chimica e Ambientale

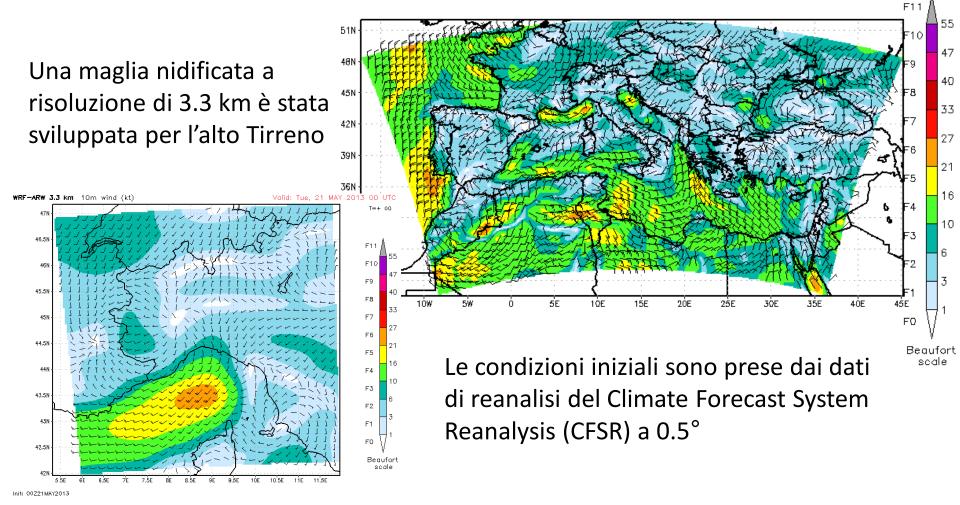
Implementazione e validazione di una catena modellistica per la previsione e reanalisi del moto ondoso nel bacino del Mediterraneo

G. Besio¹, L. Mentaschi¹, F. Cassola², A. Mazzino¹

¹DICCA, Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università di Genova ²DIFI, Dipartimento di Fisica, Università di Genova

SCOPO DEL LAVORO

Sviluppo e implementazione di una catena modellistica operativa per le previsioni a breve termine e la re-analisi del moto ondoso all'interno del bacino del Mediterraneo con particolare attenzione al Tirreno Settentrionale

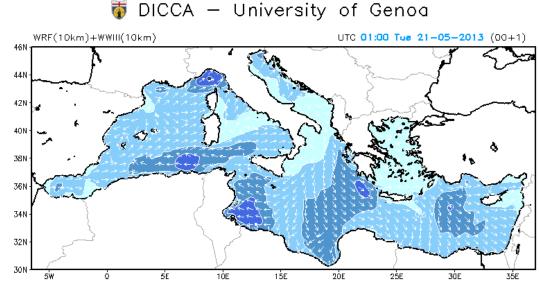

PARTNERS

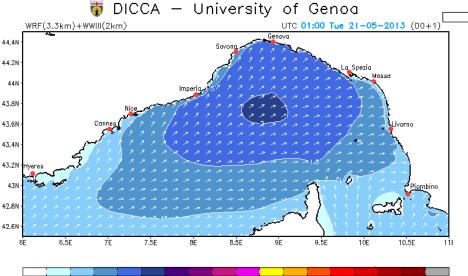
Il progetto è stato sviluppato in collaborazione con il centro Meteo dell'ARPAL Liguria e con ISPRA (RON)

DICAT Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio

IL MODELLO METEOROLOGICO

La forzante del vento è calcolata con il modello WRF caratterizzato da una risoluzione di 10 km su tutto il bacino del Mediterraneo





ge DICAT Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio

IL MODELLO DEL MOTO ONDOSO

Il modello impiegato per il calcolo all'interno del bacino del Mediterraneo è WaveWatchIII v 3.14 con una risoluzione di 10 km su tutto il bacino del Mediterraneo e con una maglia nidificata con risoluzione di 2 km nell'alto Tirreno

La catena operativa è attualmente attiva per previsioni a 72h con un run al giorno

Significant Wave Height [m] and Mean Wave Direction

www.dicca.unige.it/meteocean

Implementazione e validazione di una catena modellistica per la previsione e reanalisi del moto ondoso nel bacino del Mediterraneo – G. Besio

nige DICAT Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio

VALIDAZIONE DEL MOTO ONDOSO

Il modello è stato validato su diversi casi studio corrispondenti a mareggiate verificatesi nell'alto Tirreno

I risultati delle simulazioni numeriche sono stati confrontati con le misurazioni delle boe della Rete Ondametrica Nazionale (ISPRA, RON)

$$\frac{\partial N}{\partial t} + \frac{1}{\cos \phi} \frac{\partial}{\partial \phi} \dot{\phi} N \cos \theta + \frac{\partial}{\partial \lambda} \dot{\lambda} N + \frac{\partial}{\partial k} \dot{k} N + \frac{\partial}{\partial \theta} \dot{\theta}_g N = S$$

$$\dot{\phi} = \frac{c_g \cos \theta + U_\phi}{R} \,,$$

$$\dot{\lambda} = \frac{c_g \sin \theta + U_\lambda}{R \cos \phi} \,,$$

$$\dot{\theta}_g = \dot{\theta} - \frac{c_g \tan \phi \cos \theta}{R} \,,$$

Set up dei termini di generazione secondo Ardhuin et al. (2008)

Confronti tra la paremetrizzazione standard ACC350 con altre parametrizzazioni utilizzate in letteratura (Tolman & Chalikov, 1996; Bidlot et al., 2005)

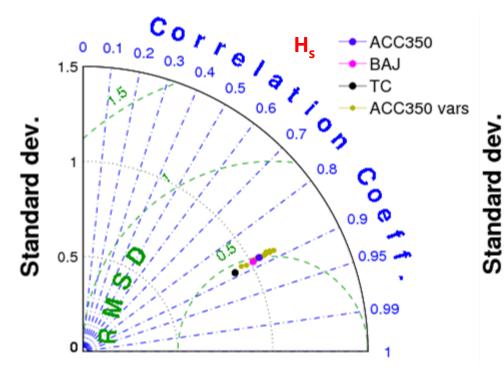
Confronto dei risultati con forzanti di vento ottenute da modelli diversi (WRF e BOLAM)

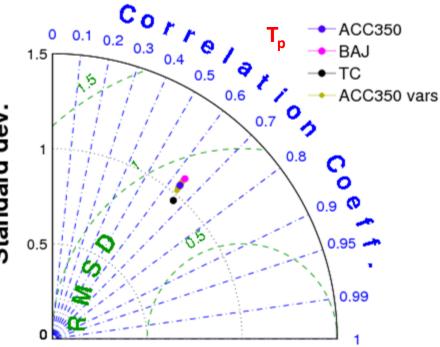
Analisi di sensitività dei parametri della parametrizzazione ACC350

ge DICAT Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio

VALIDAZIONE DEL MOTO ONDOSO

La bontà delle simulazioni è stata valutata utilizzando degli indici di errore comunemente utilizzati in ambito modellistico

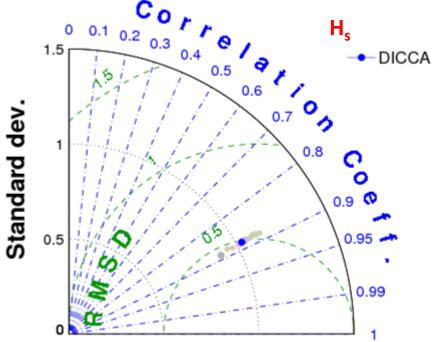

Indicatori Statistici di Errore


$$SI = \sqrt{\frac{\sum_{i=1}^{N} (S_i - O_i)^2}{\sum_{i=1}^{N} O_i^2}} \qquad CORR =$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (S_i - O_i)^2}{N}} \qquad BI = \frac{\sum_{i=1}^{N} (S_i - O_i)^2}{N}$$

$$CORR = \frac{\operatorname{cov}(S_i, O_i)}{\operatorname{var}(O_i)\operatorname{var}(S_i)}$$

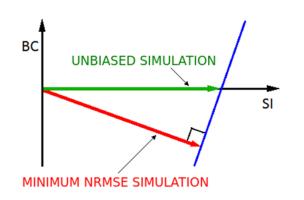
$$BI = \frac{\sum_{i=1}^{N} (S_i - O_i)}{\sum_{i=1}^{N} O_i}$$



CAT Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio

VALIDAZIONE DEL MOTO ONDOSO

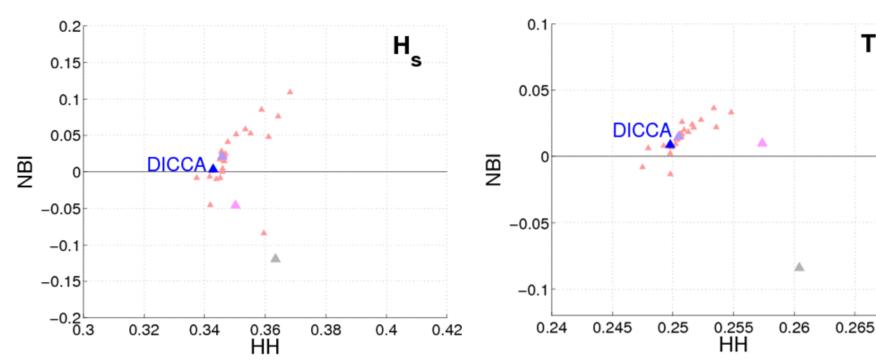
$$S_{in}(k,\theta) = \frac{\rho_a}{\rho_w} \frac{\beta_{\text{max}}}{\kappa^2} e^Z Z^4 \left(\frac{u_{\star}}{C}\right)^2 \cos^{p_{in}}(\theta - \theta_u) \sigma N(k,\theta) + S_{out}(k,\theta)$$


U			 1
H _s	NBI	NRMSE	Corr
ACC350	0.02089	0.28638	0.88279
BAJ	-0.04604	0.28000	0.88494
TC	-0.11947	0.27982	0.88876
DICCA	0.00343	0.25141	0.88343

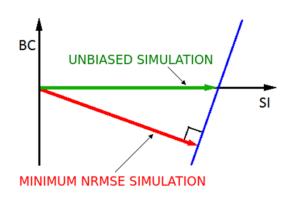
	0 0.1 0.2 0.3 0.4 P T _p	CA
dev.	0.6	
Standard dev	0.5	
S	0.99	

T _p	NBI	NRMSE	Corr
ACC350	0.01488	0.24240	0.64019
BAJ	0.01001	0.24848	0.63865
TC	-0.08398	0.23947	0.65927
DICCA	0.00875	0.24100	0.64067

CAT Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio


VALIDAZIONE DEL MOTO ONDOSO

Hanna & Heinolds (1985)


$$HH = \sqrt{\frac{\sum (S_i - O_i)^2}{\sum S_i O_i}} = \sqrt{\frac{\sum \overline{(S - O)^2}}{\sum \overline{SO}}}$$

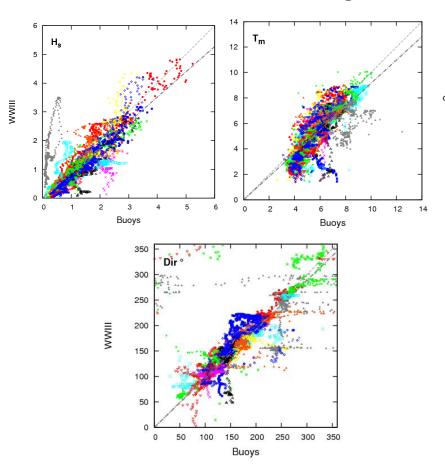
0.27

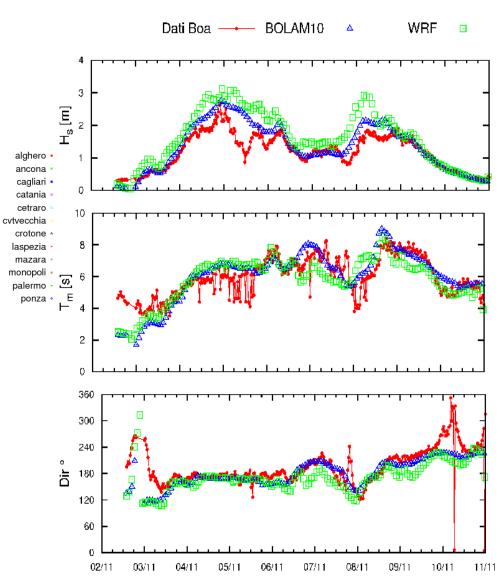
CAT Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio

VALIDAZIONE DEL MOTO ONDOSO

Hanna & Heinolds (1985)

$$HH = \sqrt{\frac{\sum (S_i - O_i)^2}{\sum S_i O_i}} = \sqrt{\frac{\sum \overline{(S - O)^2}}{\sum \overline{SO}}}$$


H _s	NBI	NRMSE	Corr	нн
ACC350	0.02089	0.28638	0.88279	0.34589
BAJ	-0.04604	0.28000	0.88494	0.35020
TC	-0.11947	0.27982	0.88876	0.36341
DICCA	0.00343	0.25141	0.88343	034283


T _p	NBI	NRMSE	Corr	нн
ACC350	0.01488	0.24240	0.64019	0.25047
BAJ	0.01001	0.24848	0.63865	0.25737
TC	-0.08398	0.23947	0.65927	0.26042
DICCA	0.00875	0.24100	0.64067	0.24978

Unige DICAT Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio

VALIDAZIONE DEL MOTO ONDOSO

Mareggiata del Novembre 2011 Differenti forzanti meteorologiche

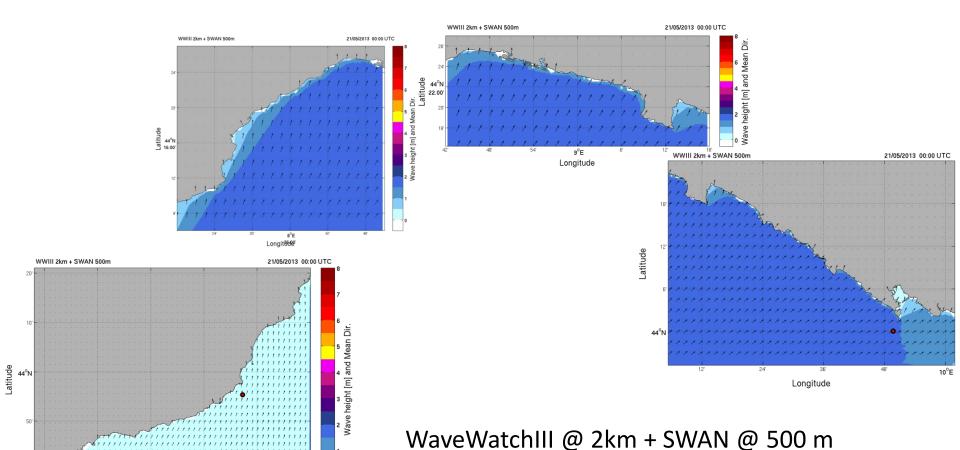
CONCLUSIONI

L'ottimizzazione del modello WaveWatchIII all'interno del Mediterraneo fornisce un nuovo set di parametri ottimale per i termini sorgente

Nell'utilizzo degli indicatori statistici di errore è necessario fare attenzione alla combinazione NRMSE e BIAS perchè non sempre il minimo di NRMSE fornisce la simulazione migliore

Per la verifica di modelli numerici è opportuno utilizzare l'indicatore di Hanna & Heinolds (1985), più affidabile rispetto a RNMSE

SVILUPPI FUTURI


Utilizzo della catena modellistica per la re-analisi del clima ondoso al largo dell costa ligura (in collaborazione con ARPAL)

Propagazione del moto ondoso sotto costa e verifica dell'accoppiamento WaveWatchIII + SWAN con dati di boe su basse profondità

Longitude

unige DICAT Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio

SVILUPPI FUTURI

Implementazione e validazione di una catena modellistica per la previsione e reanalisi del moto ondoso nel bacino del Mediterraneo – G. Besio